Search results for "controllability"
showing 10 items of 46 documents
Controllability method for acoustic scattering with spectral elements
2007
We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improveme…
Dynamic characterization for the dielectric electroactive polymer fundamental sheet
2012
Published version of an article published in the journal: International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-012-4423-6 A study into the appropriateness of characterizing the dynamics of the dielectric electroactive polymer (DEAP) fundamental sheet has been performed. Whereby a model describing the dynamics of the DEAP fundamental sheet is developed, parameters of the models are determined using experimental/simulation results, and verification has been conducted to determine the precision of the dynamic model. The precision for the DEAP sheet-obtained dynamic model could not be verified unless some parameters c…
A polynomial algorithm solving a special class of hybrid optimal control problems
2006
Hybrid optimal control problems are, in general, difficult to solve. A current research goal is to isolate those problems that lead to tractable solutions [5]. In this paper, we identify a special class of hybrid optimal control problems which are easy to solve. We do this by using a paradigm borrowed from the Operations Research field. As main result, we present a solution algorithm that converges to the exact solution in polynomial time. Our approach consists in approximating the hybrid optimal control problem via an integer-linear programming reformulation. The integer-linear programming problem is a Set-covering one with a totally unimodular constraint matrix and therefore solving the S…
Small-time bilinear control of Schrödinger equations with application to rotating linear molecules
2023
In [14] Duca and Nersesyan proved a small-time controllability property of nonlinear Schrödinger equations on a d-dimensional torus $\mathbb{T}^d$. In this paper we study a similar property, in the linear setting, starting from a closed Riemannian manifold. We then focus on the 2-dimensional sphere $S^2$, which models the bilinear control of a rotating linear top: as a corollary, we obtain the approximate controllability in arbitrarily small times among particular eigenfunctions of the Laplacian of $S^2$.
Four-Level Three-Phase Inverter With Reduced Component Count for Low and Medium Voltage Applications
2021
This paper proposes a novel three-phase topology with a reduced component count for low- and medium-voltage systems. It requires three bidirectional switches and twelve unidirectional switches for producing four-level voltages without using flying capacitors or clamping diodes, reducing the size, cost, and losses. Removing flying capacitors and clamping diodes allows it to simplify control algorithms and increase the reliability, efficiency, and lifetime. A modified low-frequency modulation (LFM) scheme is developed and implemented on the proposed topology to produce a staircase voltage with four steps. Further, a level-shifted pulse width modulation (LSPWM) is used to reduce the filter siz…
On Line Elaboration of a Mental Model During the Understanding of an Animation
2006
This experiment examines how, high and low mechanical and spatial abilities, learners understand an animation. Two variables were manipulated: the controllability of the animations and the task type of the learners to study the device. The comprehension test results indicated a positive effect of a fully controllable animation and also a positive effect of task type, when the attention of the learner is focused on the functional model and on local kinematics. The eye tracking data indicated that the learners attend more to the areas of the animations where a great amount of motion is involved along the causal chain of events. We show an effect of the controllability of the system and of the…
A translational paradigm to dtudy the rffects of uncontrollable stress in humans
2020
Theories on the aetiology of depression in humans are intimately linked to animal research on stressor controllability effects. However, explicit translations of established animal designs are lacking. In two consecutive studies, we developed a translational paradigm to study stressor controllability effects in humans. In the first study, we compared three groups of participants, one exposed to escapable stress, one yoked inescapable stress group, and a control group not exposed to stress. Although group differences indicated successful stress induction, the manipulation failed to differentiate groups according to controllability. In the second study, we employed an improved paradigm and co…
Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation
1999
Many real-world optimisation applications include several conflicting objectives of possibly nondifferentiable character. However, the lack of computationally efficient, interactive methods for nondifferentiable multi-objective optimisation problems is apparent. To satisfy this demand, a method called NIMBUS has been developed. Two versions of the basic method are presented and compared both theoretically and computationally. In order to give variety to the comparison, a related approach, called reference direction method is included. Theoretically, the methods differ in handling the information requested from the user. Numerical experiments indicate differences in computational efficiency …
Fixed domain approaches in shape optimization problems
2012
This work is a review of results in the approximation of optimal design problems, defined in variable/unknown domains, based on associated optimization problems defined in a fixed ?hold-all? domain, including the family of all admissible open sets. The literature in this respect is very rich and we concentrate on three main approaches: penalization?regularization, finite element discretization on a fixed grid, controllability and control properties of elliptic systems. Comparison with other fixed domain approaches or, in general, with other methods in shape optimization is performed as well and several numerical examples are included.
Average flow constraints and stabilizability in uncertain production-distribution systems
2009
We consider a multi-inventory system with controlled flows and uncertain demands (disturbances) bounded within assigned compact sets. The system is modelled as a first-order one integrating the discrepancy between controlled flows and demands at different sites/nodes. Thus, the buffer levels at the nodes represent the system state. Given a long-term average demand, we are interested in a control strategy that satisfies just one of two requirements: (i) meeting any possible demand at each time (worst case stability) or (ii) achieving a predefined flow in the average (average flow constraints). Necessary and sufficient conditions for the achievement of both goals have been proposed by the aut…