Search results for "convex function"

showing 10 items of 50 documents

Convex functions on Carnot Groups

2007

We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.

Convex analysisPure mathematicsCarnot groupsubelliptic equations.49L25Mathematics::Complex VariablesGeneral MathematicsMathematical analysissubelliptic equationsMathematics::Analysis of PDEsHorizontal convexityviscosity convexity35J70Convexitysymbols.namesakeCarnot groupsHomogeneous35J67Convex optimizationsymbolsPoint (geometry)Carnot cycleConvex function22E30Mathematics
researchProduct

Riemann type integrals for functions taking values in a locally convex space

2006

The McShane and Kurzweil-Henstock integrals for functions taking values in a locally convex space are defined and the relations with other integrals are studied. A characterization of locally convex spaces in which Henstock Lemma holds is given.

Convex analysisPure mathematicsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsProper convex functionConvex setSubderivativeChoquet theoryLocally convex topological vector spaceConvex combinationPettis integral McShane integral Kurzweil-Henstock integral locally convex spacesAbsolutely convex setMathematicsCzechoslovak Mathematical Journal
researchProduct

On some close to convex functions with negative coefficients

2007

In this paper we propose for study a class of close to convex functions with negative coefficients defined by using a modified Salagean operator. .

Convex hullConvex analysisPure mathematicsGeneral MathematicsMathematical analysisConvex optimizationConvex setProper convex functionConvex combinationSubderivativeConvex conjugateMathematicsFilomat
researchProduct

Shape optimization for monge-ampére equations via domain derivative

2011

In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.

Dirichlet problemMathematical optimizationPure mathematicsFictitious domain methodDomain derivativeApplied MathematicsOpen setRegular polygonMonge–Ampère equationMonge-Ampère equationSettore MAT/05 - Analisi MatematicaGeneralizations of the derivativeNorm (mathematics)Discrete Mathematics and CombinatoricsAffine isoperimetric inequalitiesConvex functionAnalysisMathematics
researchProduct

Analytic Extension of Non Quasi - Analytic Whitney Jets of Beurling Type

1998

Let (Mr)r∈ℕ0 be a logarithmically convex sequence of positive numbers which verifies M0 = 1 as well as Mr ≥ 1 for every r ∈ ℕ and defines a non quasi - analytic class. Let moreover F be a closed proper subset of ℝn. Then for every function f on ℝn belonging to the non quasi - analytic (Mr)-class of Beurling type, there is an element g of the same class which is analytic on ℝ,nF and such that Dαf(x) = Dαg(x) for every α ∈ ℕn0 and x ∈ F.

Discrete mathematicsClass (set theory)Pure mathematicsSequenceLogarithmically convex functionGeneral MathematicsExtension (predicate logic)Function (mathematics)Element (category theory)Type (model theory)MathematicsMathematische Nachrichten
researchProduct

Approximate convex hull of affine iterated function system attractors

2012

International audience; In this paper, we present an algorithm to construct an approximate convex hull of the attractors of an affine iterated function system (IFS). We construct a sequence of convex hull approximations for any required precision using the self-similarity property of the attractor in order to optimize calculations. Due to the affine properties of IFS transformations, the number of points considered in the construction is reduced. The time complexity of our algorithm is a linear function of the number of iterations and the number of points in the output convex hull. The number of iterations and the execution time increases logarithmically with increasing accuracy. In additio…

Discrete mathematicsConvex hull0209 industrial biotechnologyGeneral MathematicsApplied Mathematics010102 general mathematicsProper convex functionConvex setMathematicsofComputing_GENERALGeneral Physics and AstronomyStatistical and Nonlinear Physics02 engineering and technology[ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR]01 natural sciences[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]020901 industrial engineering & automationAffine hullTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYConvex polytopeOutput-sensitive algorithmConvex combination0101 mathematicsConvex conjugateMathematics
researchProduct

Geometric Properties of Planar BV -Extension Domains

2009

We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.

Discrete mathematicsQuasiconformal mappingMathematics::Analysis of PDEsGeometric propertySobolev spaceQuasiconvex functionExtension domains; Sobolev spaces; Functions with bounded variationPlanarSobolev spacesFunctions with bounded variationBounded functionSimply connected spaceInvariant (mathematics)Extension domainsMathematics
researchProduct

Perimeter symmetrization of some dynamic and stationary equations involving the Monge-Ampère operator

2017

We apply the perimeter symmetrization to a two-dimensional pseudo-parabolic dynamic problem associated to the Monge-Ampere operator as well as to the second order elliptic problem which arises after an implicit time discretization of the dynamical equation. Curiously, the dynamical problem corresponds to a third order operator but becomes a singular second order parabolic equation (involving the 3-Laplacian operator) in the class of radially symmetric convex functions. Using symmetrization techniques some quantitative comparison estimates and several qualitative properties of solutions are given.

DiscretizationMathematical analysisPerimeter symmetrizationPseudoparabolic dynamic Monge-Ampère equationThird orderOperator (computer programming)Dynamic problemSettore MAT/05 - Analisi MatematicaTwo-dimensional domainSymmetrizationOrder (group theory)AmpereConvex functionMathematics
researchProduct

Efficiency in constrained continuous location

1998

Abstract We present a geometrical characterization of the efficient, weakly efficient and strictly efficient points for multi-objective location problems in presence of convex constraints and when distances are measured by an arbitrary norm. These results, established for a compact set of demand points, generalize similar characterizations previously obtained for uncontrained problems. They are used to show that, in planar problems, the set of constrained weakly efficient points always coincides with the closest projection of the set of unconstrained weakly efficient points onto the feasible set. This projection property which are known previously only for strictly convex norms, allows to e…

Information Systems and ManagementGeneral Computer ScienceFeasible regionRegular polygonProjection propertyManagement Science and Operations ResearchTopologyIndustrial and Manufacturing EngineeringPlanarCompact spaceModeling and SimulationNorm (mathematics)Convex functionMathematicsEuropean Journal of Operational Research
researchProduct

Bounded Palais–Smale sequences for non-differentiable functions

2011

The existence of bounded Palais-Smale sequences (briefly BPS) for functionals depending on a parameter belonging to a real interval and which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, is obtained when the parameter runs in a full measure subset of the given interval. Specifically, for this class of non-smooth functions, we obtain BPS related to mountain pass and to global infima levels. This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma. © 2011 Elsevier Ltd. All rights reserved.

Lemma (mathematics)Pure mathematicsApplied MathematicsMathematical analysisNon-smooth functionsFunction (mathematics)Lipschitz continuityMeasure (mathematics)Infimum and supremumDeformationCritical pointBounded Palais-Smale sequenceBounded functionMountain pass geometryDifferentiable functionConvex functionAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct