Search results for "convex function"

showing 10 items of 50 documents

Relación entre conos de direcciones decrecientes y conos de direcciones de descenso

1984

Let f: N ? R a convex function and x I Ni, where N is a convex set in a real linear space. It is stated that, if Df<(x) is not empty, then Df<(x) is the algebraic interior of Df=(x).

Statistics and ProbabilityCombinatoricsLinear spaceCalculusConvex setStatistics Probability and UncertaintyAlgebraic numberConvex functionMathematicsTrabajos de Estadistica y de Investigacion Operativa
researchProduct

Sequential estimation of a location parameter and powers of a scale parameter from delayed observations

2013

The problem of sequentially estimating a location parameter and powers of a scale parameter is considered in the case when the observations become available at random times. Certain classes of sequential estimation procedures are derived under an invariant balanced loss function and with the observation cost determined by a convex function of the stopping time and the number of observations up to that time.

Statistics and ProbabilityMathematical optimizationSequential estimationLocation parameterStopping timeApplied mathematicsFunction (mathematics)Statistics Probability and UncertaintyInvariant (mathematics)Convex functionScale parameterShape parameterMathematicsStatistica Neerlandica
researchProduct

Broken ray transform on a Riemann surface with a convex obstacle

2014

We consider the broken ray transform on Riemann surfaces in the presence of an obstacle, following earlier work of Mukhometov. If the surface has nonpositive curvature and the obstacle is strictly convex, we show that a function is determined by its integrals over broken geodesic rays that reflect on the boundary of the obstacle. Our proof is based on a Pestov identity with boundary terms, and it involves Jacobi fields on broken rays. We also discuss applications of the broken ray transform.

Statistics and ProbabilityMathematics - Differential GeometryGeodesicAstrophysics::High Energy Astrophysical PhenomenaBoundary (topology)Curvature01 natural sciencessymbols.namesakeMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematicsRiemann surface010102 general mathematicsMathematical analysista111Regular polygonSurface (topology)boundary010101 applied mathematicsDifferential Geometry (math.DG)Obstaclesymbolstensor tomographyGeometry and TopologyStatistics Probability and UncertaintydimensionsConvex functionAnalysisAnalysis of PDEs (math.AP)
researchProduct

Symmetry of minimizers with a level surface parallel to the boundary

2015

We consider the functional $$I_\Omega(v) = \int_\Omega [f(|Dv|) - v] dx,$$ where $\Omega$ is a bounded domain and $f$ is a convex function. Under general assumptions on $f$, G. Crasta [Cr1] has shown that if $I_\Omega$ admits a minimizer in $W_0^{1,1}(\Omega)$ depending only on the distance from the boundary of $\Omega$, then $\Omega$ must be a ball. With some restrictions on $f$, we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these results extend to more general settings, in particular to functionals that are not differenti…

Surface (mathematics)Pure mathematicsGeneral MathematicsApplied MathematicsBoundary (topology)35B06 35J70 35K55 49K20Domain (mathematical analysis)overdetermined problems; minimizers of integral functionals; parallel surfaces; symmetryMathematics - Analysis of PDEsMinimizers of integral functionalSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsOverdetermined problemMathematics (all)Ball (mathematics)Circular symmetryDifferentiable functionConvex functionAnalysis of PDEs (math.AP)Mathematics
researchProduct

Convex semi-infinite games

1986

This paper introduces a generalization of semi-infinite games. The pure strategies for player I involve choosing one function from an infinite family of convex functions, while the set of mixed strategies for player II is a closed convex setC inRn. The minimax theorem applies under a condition which limits the directions of recession ofC. Player II always has optimal strategies. These are shown to exist for player I also if a certain infinite system verifies the property of Farkas-Minkowski. The paper also studies certain conditions that guarantee the finiteness of the value of the game and the existence of optimal pure strategies for player I.

TheoryofComputation_MISCELLANEOUSComputer Science::Computer Science and Game TheoryControl and OptimizationSemi-infiniteGeneralizationApplied MathematicsMinimax theoremComputingMilieux_PERSONALCOMPUTINGRegular polygonFunction (mathematics)Management Science and Operations ResearchBayesian gameConvex functionGame theoryMathematical economicsMathematicsJournal of Optimization Theory and Applications
researchProduct

A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals

2013

We consider the functional $$J(v) = \int_\varOmega\bigl[f\bigl(|\nabla v|\bigr) - v\bigr] dx, $$ where Ω is a bounded domain and f:[0,+∞)→ℝ is a convex function vanishing for s∈[0,σ], with σ>0. We prove that a minimizer u of J satisfies an equation of the form $$\min\bigl(F\bigl(\nabla u, D^2 u\bigr), |\nabla u|-\sigma\bigr)=0 $$ in the viscosity sense.

Viscosity solutions minimizer of convex functionals very degenerate elliptic functionalsClass (set theory)Pure mathematicsSettore MAT/05 - Analisi MatematicaBounded functionMathematical analysisDomain (ring theory)Degenerate energy levelsNabla symbolViscosity solutionConvex functionMathematics
researchProduct

Characterizations of convex approximate subdifferential calculus in Banach spaces

2016

International audience; We establish subdifferential calculus rules for the sum of convex functions defined on normed spaces. This is achieved by means of a condition relying on the continuity behaviour of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to also be necessary in Banach spaces. These results extend both the classical formulas by Hiriart-Urruty and Phelps and by Thibault.

[ MATH ] Mathematics [math]Mathematics::Functional AnalysisApproximate subdifferentialDual spaceConvex functionsApplied MathematicsGeneral MathematicsBanach spaceUniformly convex spaceSubderivativeApproximate variational principleCalculus rulesLocally convex topological vector spaceCalculusInterpolation spaceMSC: Primary 49J53 52A41 46N10[MATH]Mathematics [math]Reflexive spaceLp spaceMathematics
researchProduct

Convergence rate of a relaxed inertial proximal algorithm for convex minimization

2018

International audience; In a Hilbert space setting, the authors recently introduced a general class of relaxed inertial proximal algorithms that aim to solve monotone inclusions. In this paper, we specialize this study in the case of non-smooth convex minimization problems. We obtain convergence rates for values which have similarities with the results based on the Nesterov accelerated gradient method. The joint adjustment of inertia, relaxation and proximal terms plays a central role. In doing so, we highlight inertial proximal algorithms that converge for general monotone inclusions, and which, in the case of convex minimization, give fast convergence rates of values in the worst case.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Class (set theory)Control and OptimizationInertial frame of referenceLyapunov analysis0211 other engineering and technologies02 engineering and technologyManagement Science and Operations Research01 natural sciencessymbols.namesakenonsmooth convex minimizationrelaxationweak-convergence0101 mathematics[MATH]Mathematics [math]point algorithmMathematics021103 operations researchWeak convergence[QFIN]Quantitative Finance [q-fin]Applied MathematicsHilbert space[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]dynamicsmaximally monotone operatorsInertial proximal method010101 applied mathematicsMonotone polygonRate of convergenceConvex optimizationmaximal monotone-operatorssymbolsRelaxation (approximation)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]subdifferential of convex functionsAlgorithm
researchProduct

A sharp stability estimate for tensor tomography in non-positive curvature

2021

Funder: University of Cambridge

osittaisdifferentiaaliyhtälötMathematics - Differential GeometryGeodesicGeneral Mathematics010102 general mathematicsMathematical analysisBoundary (topology)Curvature01 natural sciencesinversio-ongelmatTensor field010101 applied mathematicsmath.DGMathematics - Analysis of PDEsDifferential Geometry (math.DG)Simply connected spaceFOS: MathematicsNon-positive curvatureTensor0101 mathematicsConvex functionComputingMilieux_MISCELLANEOUSmath.APMathematicsAnalysis of PDEs (math.AP)
researchProduct

On the spectrum of semi-classical Witten-Laplacians and Schrödinger operators in large dimension

2005

We investigate the low-lying spectrum of Witten–Laplacians on forms of arbitrary degree in the semi-classical limit and uniformly in the space dimension. We show that under suitable assumptions implying that the phase function has a unique local minimum one obtains a number of clusters of discrete eigenvalues at the bottom of the spectrum. Moreover, we are able to count the number of eigenvalues in each cluster. We apply our results to certain sequences of Schrodinger operators having strictly convex potentials and show that some well-known results of semi-classical analysis hold also uniformly in the dimension.

symbols.namesakeDimension (vector space)Degree (graph theory)Mathematical analysisSpectrum (functional analysis)Thermodynamic limitsymbolsLimit (mathematics)Convex functionAnalysisEigenvalues and eigenvectorsSchrödinger's catMathematicsJournal of Functional Analysis
researchProduct