6533b820fe1ef96bd127a66a

RESEARCH PRODUCT

Symmetry of minimizers with a level surface parallel to the boundary

Giulio CiraoloShigeru SakaguchiRolando Magnanini

subject

Surface (mathematics)Pure mathematicsGeneral MathematicsApplied MathematicsBoundary (topology)35B06 35J70 35K55 49K20Domain (mathematical analysis)overdetermined problems; minimizers of integral functionals; parallel surfaces; symmetryMathematics - Analysis of PDEsMinimizers of integral functionalSettore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsOverdetermined problemMathematics (all)Ball (mathematics)Circular symmetryDifferentiable functionConvex functionAnalysis of PDEs (math.AP)Mathematics

description

We consider the functional $$I_\Omega(v) = \int_\Omega [f(|Dv|) - v] dx,$$ where $\Omega$ is a bounded domain and $f$ is a convex function. Under general assumptions on $f$, G. Crasta [Cr1] has shown that if $I_\Omega$ admits a minimizer in $W_0^{1,1}(\Omega)$ depending only on the distance from the boundary of $\Omega$, then $\Omega$ must be a ball. With some restrictions on $f$, we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these results extend to more general settings, in particular to functionals that are not differentiable and to solutions of fully nonlinear elliptic and parabolic equations.

10.4171/jems/571http://hdl.handle.net/10447/150504