Search results for "convolutional neural network"

showing 10 items of 179 documents

An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images

2021

[EN] Melanoma is an aggressive neoplasm responsible for the majority of deaths from skin cancer. Specifically, spitzoid melanocytic tumors are one of the most challenging melanocytic lesions due to their ambiguous morphological features. The gold standard for its diagnosis and prognosis is the analysis of skin biopsies. In this process, dermatopathologists visualize skin histology slides under a microscope, in a highly time-consuming and subjective task. In the last years, computer-aided diagnosis (CAD) systems have emerged as a promising tool that could support pathologists in daily clinical practice. Nevertheless, no automatic CAD systems have yet been proposed for the analysis of spitzoi…

Skin NeoplasmsComputer scienceBiopsyMedicine (miscellaneous)CADInductive transfer learningConvolutional neural networkInductive transferArtificial IntelligenceTEORIA DE LA SEÑAL Y COMUNICACIONESBiopsyAttention convolutional neural networkmedicineHumansDiagnosis Computer-AssistedMelanomaMicroscopymedicine.diagnostic_testbusiness.industryMultiple instance learningMelanomaDeep learningHistopathological whole-slide imagesPattern recognitionGold standard (test)medicine.diseaseSpitzoid lesionsArtificial intelligenceSkin cancerbusinessArtificial Intelligence in Medicine
researchProduct

Automatic Sleep Stage Identification with Time Distributed Convolutional Neural Network

2021

Polysomnography (PSG), the gold standard for sleep stage classification, requires a sleep expert for scoring and is both resource-intensive and expensive. Many researchers currently focus on the real-time classification of the sleep stages based on biomedical signals, such as Electroencephalograph (EEG) and electrooculography (EOG). However, most of the research work is based on machine learning models with multiple signal inputs or hand-engineered features requiring prior knowledge of the sleep domain. We propose a novel encoded Time-Distributed Convolutional Neural Network (TDConvNet) to automatically classify sleep stages based on a single raw PSG signal. The TDConvNet can infer sleep st…

Sleep StagesSource codeArtificial neural networkmedicine.diagnostic_testbusiness.industryComputer sciencemedia_common.quotation_subjectPattern recognitionElectrooculographyPolysomnographyElectroencephalographyConvolutional neural networkmedicineArtificial intelligenceSleep (system call)businessmedia_common2021 International Joint Conference on Neural Networks (IJCNN)
researchProduct

A convolutional neural network for virtual screening of molecular fingerprints

2019

In the last few years, Deep Learning (DL) gained more and more impact on drug design because it allows a huge increase of the prediction accuracy in many stages of such a complex process. In this paper a Virtual Screening (VS) procedure based on Convolutional Neural Networks (CNN) is presented, that is aimed at classifying a set of candidate compounds as regards their biological activity on a particular target protein. The model has been trained on a dataset of active/inactive compounds with respect to the Cyclin-Dependent Kinase 1 (CDK1) a very important protein family, which is heavily involved in regulating the cell cycle. One qualifying point of the proposed approach is the use of molec…

Structure (mathematical logic)0303 health sciencesVirtual screening010304 chemical physicsPoint (typography)Computer sciencebusiness.industryDeep learningProcess (computing)Pattern recognition01 natural sciencesConvolutional neural networkDrug designSet (abstract data type)03 medical and health sciencesDeep LearningVirtual Screening0103 physical sciencesMolecular fingerprintsEmbeddingArtificial intelligencebusinessBioactivity prediction030304 developmental biology
researchProduct

An In-Depth Experimental Comparison of RNTNs and CNNs for Sentence Modeling

2017

The goal of modeling sentences is to accurately represent their meaning for different tasks. A variety of deep learning architectures have been proposed to model sentences, however, little is known about their comparative performance on a common ground, across a variety of datasets, and on the same level of optimization. In this paper, we provide such a novel comparison for two popular architectures, Recursive Neural Tensor Networks (RNTNs) and Convolutional Neural Networks (CNNs). Although RNTNs have been shown to work well in many cases, they require intensive manual labeling due to the vanishing gradient problem. To enable an extensive comparison of the two architectures, this paper empl…

Structure (mathematical logic)Vanishing gradient problemPhrasebusiness.industryComputer scienceDeep learning05 social sciencesPattern recognition010501 environmental sciences01 natural sciencesConvolutional neural networkSet (abstract data type)0502 economics and businessBenchmark (computing)Artificial intelligence050207 economicsbusinessSentence0105 earth and related environmental sciences
researchProduct

Deep learning approach for prediction of impact peak appearance at ground reaction force signal of running activity

2020

Protruding impact peak is one of the features of vertical ground reaction force (GRF) that is related to injury risk while running. The present research is dedicated to predicting GRF impact peak appearance by setting a binary classification problem. Kinematic data, namely a number of raw signals in the sagittal plane, collected by the Vicon motion capture system (Oxford Metrics Group, UK) were employed as predictors. Therefore, the input data for the predictive model are presented as a multi-channel time series. Deep learning techniques, namely five convolutional neural network (CNN) models were applied to the binary classification analysis, based on a Multi-Layer Perceptron (MLP) classifi…

Support Vector MachinerasitusvammatComputer science02 engineering and technologyneuroverkotliikkeenkaappausConvolutional neural networkRunning0302 clinical medicineCluster Analysis315 Sport and fitness sciencesbinary classificationrisk assessmentSignal Processing Computer-AssistedGeneral MedicineComputer Science ApplicationsRandom forestkoneoppiminenBinary classificationRUNNERSbiomekaniikkaAlgorithmsCNNforce platform0206 medical engineeringBiomedical EngineeringBioengineeringjuoksu03 medical and health sciencesDeep LearningClassifier (linguistics)HumansliikeanalyysiGround reaction forcerunning gait analysisbusiness.industryDeep learningPattern recognition030229 sport sciencesPerceptron113 Computer and information sciences020601 biomedical engineeringHuman-Computer InteractionSupport vector machineLogistic ModelsComputingMethodologies_PATTERNRECOGNITIONINJURIESArtificial intelligenceNeural Networks Computerbusiness
researchProduct

Multi-feature Counting of Dense Crowd Image Based on Multi-column Convolutional Neural Network

2020

The crowd counting task is an important research problem. Now more and more people are concerned about safety issues. When the population density reaches a very high peak, the population density counts, the alarm is sent out, and the crowds are diverted. The trampling of the Shanghai New Year’s stampede will not happen again. The final density map is produced by two steps: at first, extract feature maps from multiple layers, and then adjust their output so that they are all the same size, all these resized layers are combined into the final density map. We also used texture features and target edge detection to reduce the loss of density map detail to better integrate with our convolutional…

Task (computing)CrowdsFeature (computer vision)business.industryComputer sciencePattern recognitionArtificial intelligenceTexture (music)businessConvolutional neural networkColumn (database)Edge detectionImage based2020 5th International Conference on Computer and Communication Systems (ICCCS)
researchProduct

CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study

2020

Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the central gland (CG) and peripheral zone (PZ) can guide toward differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on deep learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability o…

Urologic DiseasesComputer scienceContext (language use)32 Biomedical and Clinical Sciences-Convolutional neural networkDeep convolutional neural networks Prostate zonal segmentation Cross-dataset generalizationProstate cancer46 Information and Computing SciencesProstateDeep convolutional neural networksmedicineAnatomical MRISegmentationProstate zonal segmentation; Prostate cancer; Anatomical MRI; Deep convolutional neural networks; Cross-dataset generalization;3202 Clinical SciencesCancerSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniProstate cancerSettore INF/01 - Informaticamedicine.diagnostic_testbusiness.industryDeep learningINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionmedicine.disease3211 Oncology and Carcinogenesismedicine.anatomical_structureCross-dataset generalizationProstate zonal segmentationBiomedical ImagingArtificial intelligenceDeep convolutional neural networkbusinessT2 weightedAnatomical MRI; Cross-dataset generalization; Deep convolutional neural networks; Prostate cancer; Prostate zonal segmentation
researchProduct

Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography

2019

Background and objectives: Spectral Domain Optical Coherence Tomography (SD-OCT) is a volumetric imaging technique that allows measuring patterns between layers such as small amounts of fluid. Since 2012, automatic medical image analysis performance has steadily increased through the use of deep learning models that automatically learn relevant features for specific tasks, instead of designing visual features manually. Nevertheless, providing insights and interpretation of the predictions made by the model is still a challenge. This paper describes a deep learning model able to detect medically interpretable information in relevant images from a volume to classify diabetes-related retinal d…

Volumetric imagingComputer scienceProfundo InterpretabilidadConvolutional neural network030218 nuclear medicine & medical imagingPattern Recognition Automatedchemistry.chemical_compoundMacular Degeneration[SPI]Engineering Sciences [physics]0302 clinical medicineDeep learning modelsInterpretabilityModelos de aprendizajeAged 80 and overArtificial neural networkmedicine.diagnostic_testMedical findings KeyWords Plus:MACULAR DEGENERATIONAngiographyMiddle AgedRetinal diseases3. Good healthComputer Science ApplicationsArea Under CurveTomographyMedical findingsAlgorithmsTomography Optical CoherenceAprendizaje - ModelosDiabetic macular edemaHealth InformaticsHallazgos médicosMacular Edema03 medical and health sciencesDeep LearningOptical coherence tomographymedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingDeep InterpretabilityHumans[INFO]Computer Science [cs]Enfermedades de la retinaRetinopathyAgedDiabetic RetinopathyOptical coherence tomographybusiness.industryDeep learningReproducibility of ResultsRetinalPattern recognitionMacular degenerationmedicine.diseasechemistryArtificial intelligenceNeural Networks ComputerLa tomografía de coherencia ópticabusinessClassifier (UML)030217 neurology & neurosurgerySoftware
researchProduct

Writer identification for historical handwritten documents using a single feature extraction method

2020

International audience; With the growth of artificial intelligence techniques the problem of writer identification from historical documents has gained increased interest. It consists on knowing the identity of writers of these documents. This paper introduces our baseline system for writer identification, tested on a large dataset of latin historical manuscripts used in the ICDAR 2019 competition. The proposed system yielded the best results using Scale Invariant Feature Transform (SIFT) as a single feature extraction method, without any preprocessing stage. The system was compared against four teams who participated in the competition with different feature extraction methods: SRS-LBP, SI…

Writer identificationComputer sciencebusiness.industryFeature extractionhistorical documentsScale-invariant feature transform020207 software engineeringPattern recognition02 engineering and technologyartificial intelligenceConvolutional neural networkSupport vector machineIdentification (information)sift descriptors0202 electrical engineering electronic engineering information engineeringIdentity (object-oriented programming)Unsupervised learning020201 artificial intelligence & image processing[INFO]Computer Science [cs]Artificial intelligencebusiness
researchProduct

A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series

2021

Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to develop an end-to-end deep learning architecture using raw polysomnographic recordings to automate sleep scoring. The proposed model adopts two-dimensional convolutional neural networks (2D-CNN) to automatically learn features from multi-modality signals, together with a "squeeze and excitation" block for recalibrating channel-wise feature responses. The learnt representations are finally fed to a softmax classifier to generate predictions for each sleep stage. The model pe…

aikasarjatComputer science02 engineering and technologytransfer learningMachine learningcomputer.software_genreConvolutional neural networkuni (lepotila)polysomnography0202 electrical engineering electronic engineering information engineeringSleep researchFeature (machine learning)aivotutkimusBlock (data storage)multimodality analysissignaalinkäsittelybusiness.industryunitutkimusDeep learningSleep laboratorySIGNAL (programming language)deep learningsignaalianalyysi020206 networking & telecommunicationsautomatic sleep scoringkoneoppiminen020201 artificial intelligence & image processingArtificial intelligenceSleep (system call)businesscomputer2020 28th European Signal Processing Conference (EUSIPCO)
researchProduct