Search results for "convolutional neural network"
showing 10 items of 179 documents
An Encrypted Traffic Classification Framework Based on Convolutional Neural Networks and Stacked Autoencoders
2020
In recent years, deep learning-based encrypted traffic classification has proven to be effective; especially, using neural networks to extract features from raw traffic to classify encrypted traffic. However, most of the neural networks need a fixed-sized input, so that the raw traffic need to be trimmed. This will cause the loss of some information; for example, we do not know the number of packets in a session. To solve these problems, a framework, which implements both a convolutional neural network (CNN) and a stacked autoencoder (SAE), is proposed in this paper. This framework uses a CNN to extract high-level features from raw network traffic and uses an SAE to encode the 26 statistica…
Enabling Real-Time Computation of Psycho-Acoustic Parameters in Acoustic Sensors Using Convolutional Neural Networks
2020
Sensor networks have become an extremely useful tool for monitoring and analysing many aspects of our daily lives. Noise pollution levels are very important today, especially in cities where the number of inhabitants and disturbing sounds are constantly increasing. Psycho-acoustic parameters are a fundamental tool for assessing the degree of discomfort produced by different sounds and, combined with wireless acoustic sensor networks (WASNs), could enable, for example, the efficient implementation of acoustic discomfort maps within smart cities. However, the continuous monitoring of psycho-acoustic parameters to create time-dependent discomfort maps requires a high computational demand that …
Quantitative comparison of motion history image variants for video-based depression assessment
2017
Abstract Depression is the most prevalent mood disorder and a leading cause of disability worldwide. Automated video-based analyses may afford objective measures to support clinical judgments. In the present paper, categorical depression assessment is addressed by proposing a novel variant of the Motion History Image (MHI) which considers Gabor-inhibited filtered data instead of the original image. Classification results obtained with this method on the AVEC’14 dataset are compared to those derived using (a) an earlier MHI variant, the Landmark Motion History Image (LMHI), and (b) the original MHI. The different motion representations were tested in several combinations of appearance-based …
Learning to Navigate in the Gaussian Mixture Surface
2021
In the last years, deep learning models have achieved remarkable generalization capability on computer vision tasks, obtaining excellent results in fine-grained classification problems. Sophisticated approaches based-on discriminative feature learning via patches have been proposed in the literature, boosting the model performances and achieving the state-of-the-art over well-known datasets. Cross-Entropy (CE) loss function is commonly used to enhance the discriminative power of the deep learned features, encouraging the separability between the classes. However, observing the activation map generated by these models in the hidden layer, we realize that many image regions with low discrimin…
SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolution Whole-Slide Digital Histopathology Images.
2021
High computational cost associated with digital pathology image analysis approaches is a challenge towards their translation in routine pathology clinic. Here, we propose a computationally efficient framework (SuperHistopath), designed to map global context features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently combines i) a segmentation approach using the linear iterative clustering (SLIC) superpixels algorithm applied directly on the whole-slide images at low resolution (5x magnification) to adhere to region boundaries and form homogeneous spatial units at tissue-level, followed by ii) classification of superpixels using a convolution neural network (CN…
GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation
2018
In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge. The novelty of our network comes with its embedded shape prior and its loss function tailored to the cardiac anatomy. Our model includes a cardiac center-of-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results).…
Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion
2020
Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based reflectance models is an interesting approach for estimating chlorophyll concentrations that are good indicators of vegetation health. The objective of this study was to develop a novel approach for retrieving chlorophyll a and b values from remotely sensed data by inverting the stochastic model of leaf optical properties using a one-dimensional convolutional neural network. The inversion results and retrieved values are validated in two ways: A classical machine learning val…
Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks
2020
In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. While these planes are used for transportation they could similarly be used for remote sensing applications by adding sensors to the planes. Hyperspectral imagers are one this kind of sensor types. There is need for the efficient methods to interpret hyperspectral data to the wanted water quality parameters. In this work we survey the performance of neural networks in the prediction of water quality parameters from remotely sensed hyperspectral data in freshwater basin…
Convolutional Regression Tsetlin Machine: An Interpretable Approach to Convolutional Regression
2021
The Convolutional Tsetlin Machine (CTM), a variant of Tsetlin Machine (TM), represents patterns as straightforward AND-rules, to address the high computational complexity and the lack of interpretability of Convolutional Neural Networks (CNNs). CTM has shown competitive performance on MNIST, Fashion-MNIST, and Kuzushiji-MNIST pattern classification benchmarks, both in terms of accuracy and memory footprint. In this paper, we propose the Convolutional Regression Tsetlin Machine (C-RTM) that extends the CTM to support continuous output problems in image analysis. C-RTM identifies patterns in images using the convolution operation as in the CTM and then maps the identified patterns into a real…
Deep CNN for IIF Images Classification in Autoimmune Diagnostics
2019
The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The class…