Search results for "cooling"

showing 10 items of 470 documents

Space-borne Bose–Einstein condensation for precision interferometry

2018

Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and conducted 110 experiments central to matter-wave interferometry. In particular, we have explored laser cooling and trapping in the presence of large accelerations as experienced during launch, and have studied the evolution, manipulation and interf…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesSpace (mathematics)01 natural sciencesPhysics - Atomic Physicslaw.invention010309 opticslawLaser cooling0103 physical sciencesAstronomical interferometer010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsMultidisciplinaryBragg's lawinterferometryBose-EinsteinComputational physicsInterferometryQuantum Gases (cond-mat.quant-gas)QuasiparticleAtomic physicsCondensed Matter - Quantum GasesBose–Einstein condensateNature
researchProduct

Anisotropic light-shift and magic-polarization of the intercombination line of Dysprosium atoms in a far-detuned dipole trap

2018

We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a "magic polarization" for which the polarizabilities of the ground and excited states are equal. From our measurements we extract both the scalar and tensorial components of the dynamic dipole polarizability for the excited state, $\alpha_E^\text{s} = 188 (12)\,\alpha_\text{0}$ and $\alpha_E^\text{t} = 34 (12)\,\alpha_\text{0}$, respectively, where $\alpha_\text{0}$ is the atomic unit for the electric polarizability. We also provide a theoretical model allowing us to predict the excited state polari…

Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciences01 natural sciencesAtomic units010305 fluids & plasmasPhysics - Atomic Physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Polarizability0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAnisotropyDoppler coolingPhysicsCondensed Matter::Quantum GasesQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Polarization (waves)3. Good healthDipolechemistryQuantum Gases (cond-mat.quant-gas)Excited stateDysprosium[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct

Effect of Plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 micro-alloyed boron steel

2009

The strains, transformation temperatures, microstructure, and microhardness of a microalloyed boron and aluminum precoated steel, which has been isothermally deformed under uniaxial tensile tests, have been investigated at temperatures between 873 and 1223 K, using a fixed strain rate value of 0.08 s−1. The effect of each factor, such as temperature and strain value, has been later valued considering the shift generated on the continuous cooling transformation (CCT) diagram. The experimental results consist of the starting temperatures that occur for each transformation, the microhardness values, and the obtained microstructure at the end of each thermomechanical treatment. All the thermome…

AusteniteMaterials scienceBainiteMetallurgyMetals and AlloysHot stampingengineering.materialStrain rateContinuous cooling transformationCondensed Matter PhysicsMicrostructureIndentation hardness22MnB5 continuous cooling transformationsMechanics of MaterialsengineeringMicroalloyed steelComposite material
researchProduct

Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system

2016

Abstract The paper provides a contribution for populating database of three physical parameters needed to model energy performance of buildings with green roofs: “coverage ratio” ( σ f ), leaf area index (LAI) and leaf temperature ( T f ). On purpose, six plant species were investigated experimentally: Phyla nordiflora, Aptenia lancifolia , Mesembryanthenum barbatus , Gazania nivea, Gazania uniflora , and Sedum . Proper ranges of the cited parameters have been found for each species. The here indicated ranges of σ f values refer to different growth levels of the species in the same lapse of time, that is four months. Single measured LAI values are also reported for the same plants. As for t…

Building cooling demandGazania020209 energyGreen roof02 engineering and technologyAtmospheric sciencesIndustrial and Manufacturing EngineeringLeaf temperatureBotanyGreen roof0202 electrical engineering electronic engineering information engineeringRange (statistics)Fractional vegetation coverageElectrical and Electronic EngineeringLeaf area indexCivil and Structural EngineeringMathematicsSettore ING-IND/11 - Fisica Tecnica AmbientalebiologyApteniaMechanical EngineeringEnergy performanceModelingBuilding and ConstructionVegetationbiology.organism_classificationPollutionSedumGeneral EnergyLeaf area index
researchProduct

Bulk carbonate isotope stratigraphy from CRP-3 core (Victoria Land Basin, Antarctica): evidence for Eocene–Oligocene palaeoclimatic evolution

2005

Bulk carbonate isotope compositions and carbonate petrography from upper Eocene and lower Oligocene siliciclastic sediments of the CRP-3 sediment core (Victoria Land Basin, Antarctica) have been investigated with the aim of contributing to reconstruction of the Antarctic Cenozoic palaeoclimate. Most of the carbonate is calcite cement occurring as patches, nodules and horizons and consisting of equant and/or drusy sparry calcite, pervasive blocky calcite and rare poikilotopic calcite spar. 18O-depleted values (from −17 to −8 δ‰) of the CRP-3 carbonates suggest that the precipitating fluids were a mixing between marine and meteoric waters from melting glaciers. The δ18O record exhibits a numb…

CalciteGlobal and Planetary Changeδ18OOceanographyPetrographychemistry.chemical_compoundPaleontologyEocene/Oligocene Antarctica Stable isotopes Carbonate diagenesis PalaeoclimatologychemistryStratigraphyCarbonateSiliciclasticGlobal coolingCenozoicGeologyGlobal and Planetary Change
researchProduct

Solvation of a probe molecule by fluid supercooled water in a hydrogel at 200 K

2008

By combining electron paramagnetic resonance (EPR) measurements on a nitroxide probe and differential scanning calorimetry (DSC), we demonstrate existence of liquid supercooled water in a silica hydrogel with high hydration level down to temperatures of at least 198 K. Besides the major fraction of liquid supercooled water, a minor fraction crystallizes at about 236 K during cooling and melts at 246 K during heating. The liquid domains are of sufficient size to solvate the nearly spherical paramagnetic probe molecule TEMPO with a diameter of about 6 angstrom. Analysis of EPR spectra provides the rotational correlation time of the probe that is further used to compare the viscosity of the su…

Calorimetry Differential ScanningChemistryTemperatureAnalytical chemistrySolvationWaterHydrogel Polyethylene Glycol DimethacrylateSurfaces Coatings and Filmslaw.inventionParamagnetismViscosityDifferential scanning calorimetryelectron paramagnetic resonanceSolubilitylawMolecular Probesconfined waterMaterials ChemistryMoleculePhysical and Theoretical ChemistrySupercoolingElectron paramagnetic resonanceRotational correlation timesupercooled water
researchProduct

Replica-exchange molecular dynamics simulation for supercooled liquids

2000

We investigate to what extend the replica-exchange Monte Carlo method is able to equilibrate a simple liquid in its supercooled state. We find that this method does indeed allow to generate accurately the canonical distribution function even at low temperatures and that its efficiency is about 10-100 times higher than the usual canonical molecular dynamics simulation.

Canonical ensemblePhysicsMolecular dynamicsStatistical Mechanics (cond-mat.stat-mech)ReplicaMonte Carlo methodSoft Condensed Matter (cond-mat.soft)FOS: Physical sciencesFunction (mathematics)Statistical physicsCondensed Matter - Soft Condensed MatterSupercoolingCondensed Matter - Statistical MechanicsPhysical Review E
researchProduct

Temperature concepts for small, isolated systems: 1/t decay and radiative cooling

2003

We report on progress in our investigations of cluster cooling. The analysis of measurements is based on introduction of the microcanonical temperature and a statistical description of the decay of an ensemble with a broad distribution in temperature. The resulting time dependence of the decay rate is a power law close to t �1 , replaced by nearly exponential decay after a characteristic time for quenching by radiative cooling. We focus on results obtained for fullerenes, both anions and cations and recently also neutral C60.

Canonical ensemblePhysicsQuenchingMicrocanonical ensembleRadiative coolingExcited statePhysics::Atomic and Molecular ClustersOptical physicsAtomic physicsExponential decayPower lawAtomic and Molecular Physics and Optics
researchProduct

Cryopreservation of Escherichia coli K12TG1: Protection from the damaging effects of supercooling by freezing

2015

Injuries in living cells caused by water freezing during a freeze-thaw process have been extensively reported. In particular, intracellular water freezing has long been incriminated in cell death caused by a high cooling rate, but this supposition could not always be demonstrated. This work aims to discriminate the role of water freezing, dehydration and cold-induced injuries in cellular damage occuring during cryopreservation. For this purpose, Escherichia coli K12TG1 suspensions were maintained in a supercooled or frozen state at -20°C for times ranging from 10 min to 5 h. The supercooled state was maintained for a long period at -20°C by applying a non-injurious isostatic pressure (P<40 …

Cell Membrane PermeabilityCell SurvivalGeneral Biochemistry Genetics and Molecular BiologyCryopreservationchemistry.chemical_compoundCryoprotective AgentsFreezingmedicineOsmotic pressureDehydrationPropidium iodideSupercoolingFluorescent DyesCryopreservationChromatographyCell DeathDehydrationEscherichia coli K12ChemistryCell MembraneIceGeneral MedicineThiobarbituratesmedicine.diseaseMembraneBiophysicsGeneral Agricultural and Biological SciencesLaurdanIntracellularPropidiumCryobiology
researchProduct

Simultaneous measurement of rotational and translational diffusion by forced Rayleigh scattering. Colloid spheres in suspension

1996

Abstract It is shown that the technique of forced Rayleigh scattering, traditionallyemployed to probe translational diffusion, can be employed to probe rotational diffusion as well. Thus with a single experiment both quantities are measured. The system under investigation is colloid spheres suspended in a glass-forming liquid. Furthermore, it is shown that the Stokes-Einstein and Debye-Stokes-Einstein relations for translational and rotational diffusion, respectively, are valid for spherical colloid particles in a supercooled liquid matrix in the vicinity of the glassy state.

ChemistryAnalytical chemistryGeneral Physics and AstronomyRotational diffusionMolecular physicsSuspension (chemistry)Physics::Fluid DynamicsCondensed Matter::Soft Condensed MatterColloidMatrix (mathematics)Forced Rayleigh scatteringSPHERESPhysical and Theoretical ChemistryDiffusion (business)SupercoolingChemical Physics Letters
researchProduct