Search results for "cooling"

showing 10 items of 470 documents

Life cycle performance assessment of small solar thermal cooling systems and conventional plants assisted with photovoltaics

2014

Starting from the results of a Life Cycle Assessment of small solar assisted heat driven chillers, the application of such methodology has been extended to systems with a conventional compression chiller assisted by a photovoltaic plant (PV). This study aims to provide a comprehensive compared investigation of these two families of solar assisted cooling systems (with solar thermal or PV). Results indicate that, in many cases, the systems with the PV grid connected plant performed best. In addition, two more configurations were investigated to further define the PV assisted systems, which minimise their interaction with the grid through the use of electricity storages. These systems performed…

ChillerSolar coolingSettore ING-IND/11 - Fisica Tecnica AmbientaleRenewable Energy Sustainability and the Environmentbusiness.industryPhotovoltaic systemLife Cycle AssessmentAutomotive engineeringSolar cooling; Life Cycle Assessment; PhotovoltaicsPhotovoltaicsPhotovoltaic thermal hybrid solar collectorSolar air conditioningPhotovoltaicsThermalGrid-connected photovoltaic power systemEnvironmental scienceGeneral Materials SciencebusinessLife-cycle assessmentSolar Energy
researchProduct

ECO-design of solar driven systems: A performance comparison between the Italian and the Brazilian context

2013

The paper shows a comparative analysis of the performances of two typologies of solar assisted cooling systems for building applications. In particular, Life Cycle Assessment (LCA) methodology is applied to assess the energy and environmental impacts of solar-assisted, heat-driven chillers and conventional compression chillers driven by grid-connected and stand-alone photovoltaic configurations. LCA is applied in compliance with the international standards of ISO 14040. System boundaries are defined following a “cradle to grave” approach, taking into account all the life-cycle phases including the raw materials supply, the production of the components of the plant, the operation and mainten…

Choosing by advantages Energy production system design Environment Life Cycle Assessment solar cooling.
researchProduct

Riming of Graupel: Wind Tunnel Investigations of Collection Kernels and Growth Regimes

2009

Abstract Laboratory experiments were carried out in the vertical wind tunnel in Mainz, Germany, to study the collision coalescence growth of single spherical ice particles having initial radii between 290 and 380 μm while they were freely floated in a laminar flow containing a cloud of supercooled droplets with radii between 10 and 20 μm. The experiments were performed in a temperature range between −8 and −12°C, where riming proceeds in the atmosphere, and with cloud liquid water contents lying between 0.9 and 1.6 g m−3 (i.e., values typically found in mixed-phase clouds). The collection kernels were calculated from the mass increase of the rimed ice particles and the average liquid water …

Coalescence (physics)Atmospheric ScienceMaterials scienceMeteorologyLiquid water contentLaminar flowAstrophysics::Earth and Planetary AstrophysicsMechanicsSupercoolingTemperature measurementGraupelWind tunnelIcingJournal of the Atmospheric Sciences
researchProduct

DISPOSITIVO E METODO PER IL CONDIZIONAMENTO DELL’ARIA

2012

Compact solar cooling system desiccant and evaporative cooling
researchProduct

Noise correlations of the ultracold Fermi gas in an optical lattice

2008

In this paper we study the density noise correlations of the two component Fermi gas in optical lattices. Three different type of phases, the BCS-state (Bardeen, Cooper, and Schieffer), the FFLO-state (Fulde, Ferrel, Larkin, and Ovchinnikov), and BP (breach pair) state, are considered. We show how these states differ in their noise correlations. The noise correlations are calculated not only at zero temperature, but also at non-zero temperatures paying particular attention to how much the finite temperature effects might complicate the detection of different phases. Since one-dimensional systems have been shown to be very promising candidates to observe FFLO states, we apply our results als…

ComputationFOS: Physical sciencesradiation pressure01 natural sciences010305 fluids & plasmaslaser coolingfermion systemsLattice (order)Laser coolingQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciencesoptical lattices010306 general physicsPhysicsCondensed Matter::Quantum GasesOptical latticeCondensed matter physicsBCS theoryBCS theoryAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterRadiation pressureQuasiparticleFermi gasOther Condensed Matter (cond-mat.other)
researchProduct

Investigating the cooling rate dependence of amorphous silica: A computer simulation study

1996

We use molecular dynamics computer simulations to study the dependence of the properties of amorphous silica on the cooling rate with which the glass has been produced. In particular we show that the density, the glass transition temperature, the radial distribution function and the distribution of the size of the rings depend on the cooling rate.

Computer simulationDistribution (number theory)ChemistryGeneral Chemical EngineeringThermodynamicsComputer experimentRadial distribution functionCondensed Matter::Disordered Systems and Neural NetworksCondensed Matter::Soft Condensed MatterMolecular dynamicsCooling ratePhysical chemistryAmorphous silicaGlass transitionBerichte der Bunsengesellschaft für physikalische Chemie
researchProduct

Design of a compact diode laser system for dual-species atom interferometry with rubidium and potassium in space

2017

We report on a micro-integrated high power diode laser based system for the MAIUS II/III missions. The laser system features fiber coupled and frequency stabilized external cavity diode lasers (ECDL) for laser cooling, Bose-Einstein condensate (BEC) generation and dual species atom interferometry with rubidium and potassium on board a sounding rocket.

Condensed Matter::Quantum GasesAtom interferometerMaterials scienceSounding rocketbusiness.industryPotassiumPhysics::Opticschemistry.chemical_elementLaser01 natural scienceslaw.inventionRubidium010309 opticschemistrylawLaser cooling0103 physical sciencesOptoelectronicsPhysics::Atomic Physics010306 general physicsbusinessBose–Einstein condensateDiode2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)
researchProduct

Extraction dynamics of electrons from magneto-optically trapped atoms

2017

Pulsed photoionization of laser-cooled atoms in a magneto-optical trap (MOT) has the potential to create cold electron beams of few meV bandwidths and few ps pulse lengths. Such a source would be highly attractive for the study of fast low-energy processes like coherent phonon excitation. To study the suitability of MOT-based sources for the production of simultaneously cold and fast electrons, we study the photoionization dynamics of trapped Cs atoms. A momentum-microscope-like setup with a delay-line detector allows for the simultaneous measurement of spatial and temporal electron distributions. The measured patterns are complex, due to the Lorentz force inducing spiral trajectories. Ray-…

Condensed Matter::Quantum GasesPhysics and Astronomy (miscellaneous)PhononChemistry02 engineering and technologyElectronPhotoionization021001 nanoscience & nanotechnology01 natural sciencesPhotoexcitationsymbols.namesakeLaser cooling0103 physical sciencessymbolsPhysics::Atomic PhysicsAtomic physics010306 general physics0210 nano-technologyLorentz forceExcitationBeam (structure)Applied Physics Letters
researchProduct

Cooling and slowing of trapped antiprotons below 100 meV

1989

Electron cooling of trapped antiprotons allows their storage at energies 10 million times lower than is available in any antiproton storage ring. More than 60 000 antiprotons with energies from 0 to 3000 eV are stored in an ion trap from a single pulse of 5.9-MeV antiprotons from LEAR. Trapped antiprotons maintain their initial energy distribution over a storage lifetime exceeding 50 h unless allowed to collide with a cold buffer gas of trapped electrons, where- upon they cool dramatically to 1 eV in tens of seconds. The cooled antiprotons can be stacked into a harmonic potential well suited for long-term storage and precision measurements.

Condensed Matter::Quantum GasesPhysicsAnnihilationEnergy distributionBuffer gasGeneral Physics and AstronomyElectronlaw.inventionNuclear physicsAntiprotonlawPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsIon trapAtomic physicsNuclear ExperimentStorage ringElectron coolingPhysical Review Letters
researchProduct

Ultracold atoms in optical lattices

2007

This article focuses on the characteristics and properties ultracold atoms in optical lattices.

Condensed Matter::Quantum GasesPhysicsCondensed Matter::OtherHigh Energy Physics::LatticePhysics::OpticsQuantum entanglementQuantum information processinglaw.inventionUltracold atomlawLaser coolingAtom opticsStatistical analysisPhysics::Atomic PhysicsAtomic physicsBose–Einstein condensateQuantum computer2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference
researchProduct