Search results for "core-shell"

showing 10 items of 13 documents

Superparamagnetic recoverable flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic s…

2019

In the present research study, a simple method was developed for the synthesis of three-dimensional flowerlike Fe3O4@Bi2O3 core–shell with g-C3N4 sheet nanocomposites. The X-ray diffraction, Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscope, vibrating sample magnetometer, dynamic laser scattering analyzer and UV–Vis diffuse reflection spectroscopy were employed for the characterization of structure, purity and morphology of the resultant samples. The degradation of indigo carmine as a model of organic dye pollutant is applied for photo-catalytic activity. The parameters which are affecting the efficiency of various parameters, such as;…

010302 applied physicsDiffractionNanocompositeMaterials scienceKineticsAnalytical chemistryElectronCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsflowerlike Fe3O4@Bi2O3 core-shell g-C3N4 superparamagnetic photocatalysischemistry.chemical_compoundIndigo carminechemistryTransmission electron microscopySettore CHIM/03 - Chimica Generale E Inorganica0103 physical sciencesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieElectrical and Electronic EngineeringFourier transform infrared spectroscopySuperparamagnetism
researchProduct

Nickel-Indium Sulphide Core-Shell Nonostructures Obtained by Spray-ILGAR Deposition

2013

Ni nanowires (NWs) of different lengths were fabricated by pulsed potentiostatic deposition within pores of polycarbonate membranes. After template dissolution, substrates underwent sequential Spray-ILGAR® depositions of thin indium sulphide films. The effect of deposition temperature was also investigated. For low number of deposition cycles, results showed complete and uniform covering of metal over the entire length of NWs, with formation of Ni - In2S3 core-shell structures. However, with increasing number of deposition cycles films became uneven and crusty, especially at higher temperatures, owing to the simultaneous formation of nickel sulfide. This drawback was almost eliminated doubl…

Core-shell nanostructures electrodeposition solar cells nanowiresSettore ING-IND/23 - Chimica Fisica Applicata
researchProduct

Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures

2020

This research was funded by the ERDF project “Smart Metal Oxide Nanocoatings and HIPIMS Technology”, project number: 1.1.1.1/18/A/073. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².

Materials scienceAbsorption spectroscopyNanowireGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylaw.inventionlawMonolayer:NATURAL SCIENCES:Physics [Research Subject Categories]Layered materialsElectron microscopyX-ray absorption spectroscopyReS2business.industryGrapheneX-ray absorption spectroscopyHeterojunctionSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsX-ray diffraction0104 chemical sciencesSurfaces Coatings and FilmsSemiconductorRaman spectroscopyCore-shell nanowireOptoelectronicsDirect and indirect band gaps0210 nano-technologybusinessApplied Surface Science
researchProduct

Silica nanoparticle core structure examined by the E?Si? center 29Si strong hyperfine interaction

2015

Abstract β-Ray irradiation up to 1.2 GGy was employed to induce E′Si γ defects and to study the structure of silica nanoparticles with diameters from 7 up to 20 nm. Defect concentration and their 29 Si strong hyperfine doublet were investigated through electron paramagnetic resonance measurements. Our data indicate that stable defects are located in the nanoparticle core. Furthermore, the E′Si γ hyperfine interaction evidences that the core structure is denser than bulk silica and independent from the particle size. Finally, we put in evidence that the core structure is stable and unaffected by the irradiation in the investigated dose range maintaining the specific features of nanoparticles.

Materials scienceAnalytical chemistryNanoparticleSilica nanoparticleCeramics and CompositeCondensed Matter PhysicMaterials Chemistry Metals and Alloyslaw.inventionSilica nanoparticleslawMaterials ChemistryIrradiationElectron paramagnetic resonanceHyperfine structureComputingMilieux_MISCELLANEOUSRange (particle radiation)Core-shell modelElectronic Optical and Magnetic MaterialSettore FIS/01 - Fisica Sperimentaleβ-Ray irradiation[CHIM.MATE]Chemical Sciences/Material chemistryCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCore (optical fiber)Chemical physicsCeramics and CompositesParticle sizeElectron paramagnetic resonance
researchProduct

Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, f…

2021

Abstract Samples with complex matrix analyzed during explanation of pathogenesis of various diseases and food or environmental monitoring request advanced analytical and instrumental devices. Among the materials used for described purposes, quantum (QDs) or carbon dots (CDs) layered by molecularly imprinted polymer (MIP) shells have gained widespread attention. Unique optical and physicochemical properties of QDs/CDs together with high MIPs selectivity make the QD/CD-MIP conjugates capable of adsorbing specific target molecules – such a binding event is then transduced as the optical signal of the response by the QDs/CDs. This review includes brief introduction on principles of imprinting p…

Molecularly imprinted polymerAnalyteBioanalysisComplex matrixMaterials science010401 analytical chemistryMolecularly imprinted polymerQuantum dotchemistry.chemical_elementNanotechnologyConjugated system01 natural sciencesCarbon dot0104 chemical sciencesAnalytical ChemistryNanomaterialschemistryBioanalysisCore-shell materialQuantumCarbonSpectroscopyTrac-Trends in Analytical Chemistry
researchProduct

Nonlinear Optical Characterization of InP@ZnS Core-Shell Colloidal Quantum Dots Using 532 nm, 10 ns Pulses

2021

InP@ZnS core-shell colloidal quantum dots (CQDs) were synthesized and characterized using the z-scan technique. The nonlinear refraction and nonlinear absorption coefficients (γ = −2 × 10−12 cm2 W−1, β = 4 × 10−8 cm W−1) of these CQDs were determined using 10 ns, 532 nm pulses. The saturable absorption (β = −1.4 × 10−9 cm W−1, Isat = 3.7 × 108 W cm−2) in the 3.5 nm CQDs dominated at small intensities of the probe pulses (I ≤ 7 × 107 W cm−2) followed by reverse saturable absorption at higher laser intensities. We report the optical limiting studies using these CQDs showing the suppression of propagated nanosecond radiation in the intensity range of 8 × 107–2 × 109 W cm−2. The role of nonline…

Range (particle radiation)Materials sciencesaturable absorptionGeneral Chemical EngineeringSaturable absorptionRadiationNanosecondLaserMolecular physicsArticlecore-shell colloidal quantum dotslaw.inventionCharacterization (materials science)ChemistryInP@ZnSlawTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYThermalnonlinear refractionGeneral Materials ScienceColloidal quantum dotsnonlinear absorptionQD1-999Nanomaterials
researchProduct

Electrodeposition and ILGAR process to obtain Ni-In2S3 core-shell nanowires

2013

Settore ING-IND/23 - Chimica Fisica ApplicataElectrodeposition ILGAR process Ni-In2S3 core-shell nanowires template synthesis
researchProduct

Reliable and simple analytical methods for determination of citrulline and metabolically related amino acids by liquid chromatography after derivatiz…

2014

We describe the development of a high-performance liquid chromatography (HPLC) method for the determination of citrulline and other amino acids relevant to intestinal diseases. The amino acids were derivatized with 9-fluorenylmethylchloroformate (FMOC-Cl) and their derivatives were separated on two different columns, a core-shell column (Halo C18) and a silica-based monolith (Chromolith Performance RP-18). The derivatization reaction was optimized with respect to pH, buffer concentration and reproducibility. The optimal derivatization conditions were achieved with 0.4 M borate buffer at pH 9.20, a constant ratio of FMOC-Cl/total amino acids (10 : 1) and 75 mM tyramine after 1 min (quenching…

chemistry.chemical_classificationgeographyReproducibilityMonolithic HPLC columnQuenching (fluorescence)Chromatographygeography.geographical_feature_categoryResolution (mass spectrometry)General Chemical EngineeringGeneral EngineeringCiencias QuímicasHigh-performance liquid chromatographyMonolithic ColumnsAnalytical ChemistryAmino acidCore-Shell Columnschemistry.chemical_compoundchemistryCitrullineQuímica AnalíticaMonolithAmino AcidsDerivatizationCIENCIAS NATURALES Y EXACTAS
researchProduct

Oxidation of silicon nanoparticles produced by ns laser ablation in liquids

2014

The investigation of nanoparticles produced by ns pulsed Nd:YAG laser ablation of silicon in liquids is reported. Combined characterization by morphological and structural techniques shows that these nanoparticles have a mean diameter of ~3 nm and a core-shell structure consisting of a Si-nanocrystal surrounded by a layer of oxidized Si. Time resolved luminescence spectra evidence visible and UV emissions: a broad band around 1.9 eV originates from Si-nanocrystals, while two bands centered at 2.7 eV and 4.4 eV are associated with oxygen deficient centers in the SiO2 shell.

laser ablation nanoparticles oxidation Si/SiO2 core-shell time-resolved luminescence
researchProduct

Nickel-Indium Sulphide Core-Shell Nanostructures Obtained by Spray-ILGAR Deposition

2013

Ni nanowires (NWs) of different lengths were fabricated by pulsed potentiostatic deposition within pores of polycarbonate membranes. After template dissolution, substrates underwent sequential Spray-ILGAR (R) depositions of thin indium sulphide films. The effect of deposition temperature was also investigated. For low number of deposition cycles, results showed complete and uniform covering of metal over the entire length of NWs, with formation of Ni - In2S3 core-shell structures. However, with increasing number of deposition cycles films became uneven and crusty, especially at higher temperatures, owing to the simultaneous formation of nickel sulfide. This drawback was almost eliminated do…

lcsh:Computer engineering. Computer hardwareSettore ING-IND/23 - Chimica Fisica Applicatacore-shell nanostructures ILGAR Electrodeposition template synthesislcsh:TP155-156lcsh:TK7885-7895lcsh:Chemical engineering
researchProduct