Search results for "coupling"
showing 10 items of 1862 documents
Chiral coupled channel dynamics of theΛ(1520)and theK−p→π0π0Λreaction
2005
We study the $\ensuremath{\Lambda}(1520){D}_{03}$ in a chiral coupled channel approach. This resonance appears to be dynamically generated from the interaction of the decuplet of baryons and the octet of mesons in s wave, and its treatment is improved here with the phenomenological inclusion of the $\overline{K}N$ and $\ensuremath{\pi}\ensuremath{\Sigma}$ channels in d wave. Since the most important building block in $\ensuremath{\Lambda}(1520)$ is the $\ensuremath{\pi}{\ensuremath{\Sigma}}^{*}(1385){P}_{13}$ channel, we study the ${K}^{\ensuremath{-}}p\ensuremath{\rightarrow}\ensuremath{\pi}{\ensuremath{\Sigma}}^{*}(1385)({\ensuremath{\pi}}^{0}\ensuremath{\Lambda})$ reaction in the region …
Λ(1520)andΣ(1385)in the nuclear medium
2006
Recent studies of the {lambda}(1520) resonance within chiral unitary theory with coupled channels find the resonance as a dynamically generated state from the interaction of the decuplet of baryons and the octet of mesons, essentially a quasibound state of {pi}{sigma}{sup *}(1385) in this case, although the coupling of the {lambda}(1520) to the KN and {pi}{sigma} makes this picture only approximate. The {pi}{sigma}{sup *}(1385) decay channel of the {lambda}(1520) is forbidden in free space for the nominal mass of the {sigma}{sup *}(1385), but the coupling of the {pi} to ph components in the nuclear medium opens new decay channels of the {lambda}(1520) in the nucleus and produces a much larg…
Efficiency optimization in bi-directional inductive power transfer systems
2015
Inductive Power Transfer (IPT) allows to wirelessly supply electronic devices. Thus, it is a very smart technique of battery charging for electric vehicles. In a parking area scenario, IPT is a proper method aiming at the energy transfer from the vehicle battery to the electric grid too. Bi-Directional Inductive Power Transfer (BDIPT) Systems are an attractive solution for the automotive market. Due to the great relevance of the energy saving problem, the goal of an efficiency maximization is researched by the energy market. In this paper, an in-depth investigation of the power efficiency in BDIPT systems is carried out, aiming at the optimum efficiency.
A Small Power Transmission Prototype for Electric Vehicle Wireless Battery Charge Applications
2012
In this paper a low cost prototype of wireless power transfer system based on air coupling is presented. The system here proposed can be useful for electric vehicle (EV) battery charging systems. It consists mainly of two copper wire coils, placed one in front of the other on the same axis. The inductor coil can easily be placed under the road surface (in a parking), while the other (the receiver coil) in the lower side of the vehicle. By exploiting the coils resonance coupling effect, electric energy can be transferred from the inductor coil to the receiver in order to charge the batteries. Low cost experimental tests carried out at DIEETCAM - University of Palermo, demonstrated the effect…
Investigation of inductive coupling solutions for E-bike wireless charging
2015
Wireless charging of electric vehicle batteries is a major topic for academic and industrial research. The wireless charging is based on the inductive coupling between a primary coil, connected to the grid, and a secondary coil, connected to the vehicle battery. Wireless battery charging provides benefits in terms of comfort for the drivers, who should just park to start the charging operation, without needing to plug in the vehicle. Wireless charging is particularly convenient for E-bike users. For the bicycle charging, the inductive coupling should be implemented through a compact and light-weight solution. In this paper, different options of inductively coupled coils for E- bike charging…
Wireless Power Transmission for house appliances: A small-scale resonant coupling prototype
2016
This paper presents a low cost prototype of wireless power transfer system based on resonant coupling. The system here proposed can be useful for house appliances battery charging systems: as a matter of fact, it consists mainly of two copper wire coils or windings, placed one in front of the other on the same axis. By exploiting the coils resonance coupling effect, electric energy can be transferred from the inductor coil to the receiver in order to charge the batteries. Low cost experimental tests demonstrated the effectiveness of the proposed wireless power transfer prototype, being it capable to reach an efficiency of about 80% and more along a distance of 30 cm.
Control subsystem design for wireless power transfer
2014
Recently, the wireless power transfer has been increasingly employed. Particularly for the electric vehicles, the wireless solution is attractive for contactless battery charging, based on the Inductive Power Transfer (IPT). In this paper, a 150W prototype for IPT-based battery charging is presented and design criteria are reported. In addition to the power stage analysis, a proper control strategy is proposed. Simulation and experimental results are shown. The proposed control method aims at regulating the load current against variations in the magnetic coupling, so that the required amount of power can be supplied despite of unexpected decreases in the coupling efficiency.
Experimental test on a Contactless Power Transfer system
2014
Contactless Power Transfer (CPT) is an ever-growing technology in automotive market, due to the significant improvement brought by it to battery charging operation in terms of safety and comfort. CPT is based on inductive coupling between two coils, so that power cords can be avoided for vehicles battery charging and an important contribution towards a smarter mobility can arise. In this paper, a CPT prototype for E-bike is proposed. Magnetic design and power electronics system are described. Experimental results deriving from laboratory tests are presented and power efficiency of the system is addressed.
Role of the reagents consumption in the chaotic dynamics of the Belousov-Zhabotitinsky oscillator in closed unstirred reactors
2010
Chemical oscillations generated by the Belousov–Zhabotinsky reaction in batch unstirred reactors, show a characteristic chaotic transient in their dynamical regime, which is generally found between two periodic regions. Chemical chaos starts and finishes by following a direct and an inverse Ruelle–Takens–Newhouse scenario, respectively. In previous works we showed, both experimentally and theoretically, that the complex oscillations are generated by the coupling among the nonlinear kinetics and the transport phenomena, the latter due to concentration and density gradients. In particular, convection was found to play a fundamental role. In this paper, we develop a reaction–diffusion–convecti…
Clusters and Industrial Districts: Where is the Literature Going? Identifying Emerging Sub-Fields of Research
2015
[EN] The industrial district and cluster literature has generated an extraordinary quantity of articles, debates and topics for discussion, and encompasses one of the most vibrant lines of research in the field of economics, geography, management and related disciplines. The literature, however, is fairly fragmented. In this paper, “bibliometric” methods are used to analyse the cluster literature published between 1957 and 2014 in order to explore “prospective” research priorities through the method of “bibliographic coupling”. Beyond focusing on foundational works in the past, this approach shifts the focus away from the practice of analysing co-citations and seminal contributions to one o…