Search results for "coupling"

showing 10 items of 1862 documents

Enhanced perpendicular magnetocrystalline anisotropy energy in an artificial magnetic material with bulk spin-momentum coupling

2019

We systematically investigate the perpendicular magnetocrystalline anisotropy (MCA) in $\mathrm{Co}\ensuremath{-}\mathrm{Pt}/\mathrm{Pd}$-based multilayers. Our magnetic measurement data show that the asymmetric Co/Pd/Pt multilayer has a significantly larger perpendicular magnetic anisotropy (PMA) energy compared to the symmetric Co/Pt and Co/Pd multilayer samples. We further support this experiment by first-principles calculations on ${\mathrm{CoPt}}_{2}, {\mathrm{CoPd}}_{2}$, and CoPtPd, which are composite bulk materials that consist of three atomic layers in a unit cell, Pt/Co/Pt, Pd/Co/Pd, and Pt/Co/Pd, respectively. By estimating the contribution of bulk spin-momentum coupling to the …

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsPoint reflectionMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCoupling (probability)Magnetocrystalline anisotropy01 natural sciencesMomentum0103 physical sciencesPerpendicularSymmetry breaking010306 general physics0210 nano-technologySpin (physics)Energy (signal processing)
researchProduct

Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy

2022

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-Boron-Nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab-initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons, and is no longer comprised of discrete harmonic orders, but rather of a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as bond compression or stretching. We further show that in the regime where the…

Condensed Matter - Materials ScienceMultidisciplinarynonlinear opticsphononsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics::OpticsElectron-phonon couplingSettore FIS/03 - Fisica Della Materiaultrafast spectroscopypump-robe spectroscopyPhysics::Atomic and Molecular ClustersHHGOptics (physics.optics)Physics - Optics
researchProduct

Thermal properties in low dimensional structures below 1 K

2009

In this thesis thermal properties of low dimensional structures were experimentally studied at low temperatures with the help of tunnel junction thermometry and the Joule heating technique. The main objects of study were electron-phonon coupling in disordered thin metal films and phonon transport in suspended silicon nitride membranes. Our aim has been to clarify the effect of the phonon dimensionality, i.e. the effect of boundaries to the phonon modes and the transition from 3D to 2D phonons. The dimensionality cross over had not been observed before this work even though it is fabricationally a standard procedure to create the low dimensional environments for nanoscale applications and de…

Condensed Matter::Materials ScienceCondensed Matter::Superconductivityphonon transportlow dimensional structuresSINIS thermometryelectron-phonon couplingthermal relaxationThermal relaxation electron-phonon coupling phonon transport low dimensional structures SINIS thermometry
researchProduct

Magnetic Coupling in Y3Fe5O12/Gd3Fe5O12 Heterostructures

2021

Ferrimagnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG) is the prototypical material for studying magnonic properties due to its exceptionally low damping. By substituting the yttrium with rare earth elements that have a net magnetic moment, we can introduce an additional spin degree of freedom. Here, we study the magnetic coupling in epitaxial ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$/${\mathrm{Gd}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ (YIG/GIG) heterostructures grown by pulsed laser deposition. From bulk sensitive magnetometry and surface sensitive spin Seebeck effect and spin Hall magnetoresistance measurements, we determine the alignment of the heterostruct…

Condensed Matter::Materials ScienceMagnetizationMaterials scienceMagnetic momentMagnetoresistanceFerromagnetismCondensed matter physicsFerrimagnetismMagnonGeneral Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsCoupling (probability)Inductive couplingPhysical Review Applied
researchProduct

Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays.

2022

Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton–polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton–polaritons with an exciton fraction of 50% show a propagation length…

Condensed Matter::Quantum GasesCondensed Matter::OtherPhysics::Opticsmolecular dynamics simulationspolariton transportfysikaalinen kemiaCondensed Matter::Mesoscopic Systems and Quantum Hall EffectelektronitkvasihiukkasetplasmonicsAtomic and Molecular Physics and Opticsnanoparticle arraytetraceneElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencemolekyylifysiikkaplasmoniikkastrong light-matter couplingeksitonitnanohiukkasetmolekyylidynamiikkaElectrical and Electronic EngineeringBiotechnologyACS photonics
researchProduct

The effect of interactions on Bose-Einstein condensation in a quasi two-dimensional harmonic trap

1999

A dilute bose gas in a quasi two-dimensional harmonic trap and interacting with a repulsive two-body zero-range potential of fixed coupling constant is considered. Using the Thomas-Fermi method, it is shown to remain in the same uncondensed phase as the temperature is lowered. Its density profile and energy are identical to that of an ideal gas obeying the fractional exclusion statistics of Haldane. PACS: ~03.75.Fi, 05.30.Jp, 67.40.Db, 05.30.-d

Condensed Matter::Quantum GasesCoupling constantPhysicsStatistical Mechanics (cond-mat.stat-mech)Condensed Matter - Mesoscale and Nanoscale PhysicsBose gasFOS: Physical sciencesCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsIdeal gas010305 fluids & plasmaslaw.inventionTrap (computing)lawPhase (matter)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesHarmonicAtomic physics010306 general physicsCondensed Matter - Statistical MechanicsBose–Einstein condensateJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Vortices in rotating two-component boson and fermion traps

2010

Quantum liquids may carry angular momentum by the formation of vortex states. This is well known for Bose-Einstein condensates in rotating traps, and was even found to occur in quantum dots at strong magnetic fields. Here we consider a two-component quantum liquid, where coreless vortices and interlaced lattices of coreless vortices appear in a very similar way for fermions and bosons with repulsive two-body interactions. The ground states at given angular momentum, as well as the pair correlations for equal and different numbers of atoms in the two components, are studied. (C) 2009 Elsevier B.V. All rights reserved.

Condensed Matter::Quantum GasesPhysicsAngular momentumta214Condensed matter physicsta114ta221vorticesquantum dotsFermionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionVortexlawQuantum dotTotal angular momentum quantum numberQuantum mechanicsAngular momentum couplingBose–Einstein condensateta218BosonPHYSICA E: LOW: DIMENSIONAL SYSTEMS AND NANOSTRUCTURES
researchProduct

Many-body physics with ultracold gases

2007

This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.

Condensed Matter::Quantum GasesPhysicsHubbard modelCondensed Matter::OtherFOS: Physical sciencesGeneral Physics and AstronomyBCS theoryBose–Hubbard model01 natural sciences010305 fluids & plasmaslaw.inventionCondensed Matter - Other Condensed MatterCoupling (physics)Tonks–Girardeau gas[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]lawUltracold atom[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Quantum mechanicsQuantum electrodynamics0103 physical sciencesAtomtronics010306 general physicsBose–Einstein condensateOther Condensed Matter (cond-mat.other)Reviews of Modern Physics
researchProduct

Direct Measurement of the Free Cyclotron Frequency of a Single Particle in a Penning Trap

2011

A measurement scheme for the direct determination of the free cyclotron frequency ${\ensuremath{\nu}}_{c}$ of a single particle stored in a Penning trap is described. The method is based on the dressed states of mode coupling. In this novel measurement scheme both radial modes of the single trapped particle are simultaneously coupled to the axial oscillation mode.

Condensed Matter::Quantum GasesPhysicsOscillationCyclotronGeneral Physics and AstronomyPenning trapIon trappingFourier transform ion cyclotron resonancelaw.inventionlawMode couplingParticlePhysics::Atomic PhysicsIon trapAtomic physicsPhysical Review Letters
researchProduct

Strong-coupling phases of the spin-orbit-coupled spin-1 Bose-Hubbard chain: Odd-integer Mott lobes and helical magnetic phases

2017

We study the odd integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a novel universality class, with critical exponents associated with the divergence of the correlation length $\nu \approx 2/3$ and the order parameter susceptibility $\gamma \approx 1/2$. We…

Condensed Matter::Quantum GasesPhysicsPhase transitionStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsFOS: Physical sciencesOrder (ring theory)02 engineering and technology021001 nanoscience & nanotechnologyCoupling (probability)01 natural sciencesLandau theoryCondensed Matter - Strongly Correlated ElectronsParamagnetismQuantum Gases (cond-mat.quant-gas)0103 physical sciencesSpin modelCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum Gases010306 general physics0210 nano-technologySpin (physics)Critical exponentPhysical Review A
researchProduct