Search results for "cryptochrome"

showing 10 items of 19 documents

Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria.

2017

This work represents the first initiative to analyze the distribution of B. thuringiensis in Algeria and to evaluate the biological potential of the isolates. A total of 157 isolates were recovered, with at least one isolate in 94.4% of the samples. The highest Bt index was found in samples from rhizospheric soil (0.48) and from the Mediterranean area (0.44). Most isolates showed antifungal activity (98.5%), in contrast to the few that had antibacterial activity (29.9%). A high genetic diversity was made evident by the finding of many different crystal shapes and various combinations of shapes within a single isolate (in 58.4% of the isolates). Also, over 50% of the isolates harbored cry1, …

0301 basic medicineAntifungalStaphylococcus aureusmedicine.drug_classHealth Toxicology and Mutagenesis030106 microbiologyBacterial ToxinsBiological pest controlBacillus thuringiensisBiologyToxicologyArticleMicrobiology03 medical and health sciencesB. thuringiensisAnti-Infective AgentsBacterial ProteinsBacillus thuringiensismedicineEscherichia colibiocontrolGeneSoil MicrobiologyGenetic diversitycryChitinasesFungi<i>B. thuringiensis</i>; antibacterial; antifungal; <i>cry</i>; <i>vip3</i>; chitinase; biocontrolAntimicrobialbiology.organism_classificationCryptochromesantibacterialHexosaminidasesGenes BacterialAlgeriachitinaseChitinasePseudomonas aeruginosavip3biology.proteinMicroscopy Electron ScanningAntibacterial activityantifungalToxins
researchProduct

2021

Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum …

0301 basic medicineendocrine systemanimal structuresbiologyPhysiologyPeriod (gene)fungiCircadian clockbiology.organism_classificationCell biologyAcyrthosiphon pisum03 medical and health sciences030104 developmental biology0302 clinical medicineCryptochromePhysiology (medical)CLOCK Proteinssense organsCircadian rhythmDrosophila melanogasterCorpus allatum030217 neurology & neurosurgeryFrontiers in Physiology
researchProduct

Flashing light in sponges through their siliceous fiber network: A new strategy of “neuronal transmission” in animals

2012

Sponges (phylum Porifera) represent a successful animal taxon that evolved prior to the Ediacaran-Cambrian boundary (542 million years ago). They have developed an almost complete array of cell- and tissue-based interaction systems necessary for the establishment of a functional, multicellular body. However, a network of neurons, one cell/tissue-communication system is missing in sponges. This fact is puzzling and enigmatic, because these animals possess receptors known to be involved in the nervous system in evolutionary younger animal phyla. As an example, the metabotropic glutamate/GABA-like receptor has been identified and cloned by us. Recently, we have identified a novel light transmi…

0303 health sciencesMultidisciplinarybiologyHexactinellid030302 biochemistry & molecular biologyAnatomybiology.organism_classificationCell biologySuberites domuncula03 medical and health sciencesSpongeDemospongeSponge spiculeCryptochromeLuciferaseSignal transductionGeneral030304 developmental biologyChinese Science Bulletin
researchProduct

2019

Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from Drosophila melanogaster (DmCry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events. Here, we use nano- to millisecond time-resolved x-ray solution scattering to reveal the light-activated conformational changes in DmCry and the related (6-4) photolyase. DmCry undergoes a series of structural changes, culminating in the release of the carboxyl-terminal tail (CTT). The photolyase has a simpler structural response. We find that the CTT release in DmCry depends on pH. Mutat…

0303 health sciencesMultidisciplinarybiologyTimelessChemistryCircadian clockPhotoreceptor protein010402 general chemistrybiology.organism_classification01 natural sciences0104 chemical sciences03 medical and health sciencesTransduction (biophysics)CryptochromeBiophysicsSignal transductionDrosophila melanogasterPhotolyase030304 developmental biologyScience Advances
researchProduct

Identification and characterization of circadian clock genes in the pea aphid Acyrthosiphon pisum

2010

The molecular basis of circadian clocks is highly evolutionarily conserved and has been best characterized in Drosophila and mouse. Analysis of the Acyrthosiphon pisum genome revealed the presence of orthologs of the following genes constituting the core of the circadian clock in Drosophila: period (per), timeless (tim), Clock, cycle, vrille, and Pdp1. However, the presence in A. pisum of orthologs of a mammal-type in addition to a Drosophila-type cryptochrome places the putative aphid clockwork closer to the ancestral insect system than to the Drosophila one. Most notably, five of these putative aphid core clock genes are highly divergent and exhibit accelerated rates of change (especially…

Geneticsanimal structuresbiologyTimelessPeriod (gene)Circadian clockfood and beveragesbiochemical phenomena metabolism and nutritionbiology.organism_classificationAcyrthosiphon pisumCLOCKCryptochromeInsect ScienceBotanyGeneticsCircadian rhythmMolecular BiologyGeneInsect Molecular Biology
researchProduct

Flashing light signaling circuit in sponges: Endogenous light generation after tissue ablation in Suberites domuncula

2010

The skeleton of siliceous sponges (phylum Porifera: classes Demospongiae and Hexactinellida), composed of tightly interacting spicules that assemble to a genetically fixed scaffold, is formed of bio-silica. This inorganic framework with the quality of quartz glass has been shown to operate as light waveguide in vitro and very likely has a similar function in vivo. Furthermore, the molecular toolkit for endogenous light generation (luciferase) and light/photon harvesting (cryptochrome) has been identified in the demosponge Suberites domuncula. These three components of a light signaling system, spicules—luciferase—cryptochrome, are concentrated in the surface layers (cortex) of the poriferan…

LightBlotting WesternBiochemistryDemospongeCryptochromeCortex (anatomy)BotanymedicineAnimalsLuciferaseLuciferasesMolecular BiologyTranscription factorbiologyReverse Transcriptase Polymerase Chain ReactionCell BiologyBlotting Northernbiology.organism_classificationImmunohistochemistryCell biologyCryptochromesSuberites domunculaSpongemedicine.anatomical_structureLight emissionSuberitesSignal TransductionJournal of Cellular Biochemistry
researchProduct

Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana.

2012

The circadian clock plays an important role in adaptation in time and space by synchronizing changes in physiological, developmental, and behavioral traits of organisms with daily and seasonal changes in their environment. We have studied some features of the circadian activity and clock organization in a northern Drosophila species, Drosophila montana, at both the phenotypic and the neuronal levels. In the first part of the study, we monitored the entrained and free-running locomotor activity rhythms of females in different light-dark and temperature regimes. These studies showed that D. montana flies completely lack the morning activity component typical to more southern Drosophila speci…

LightPhysiologyPeriod (gene)Circadian clockBiologyMotor ActivityPigment dispersing factorCryptochromeBiological ClocksPhysiology (medical)medicineAnimalsDrosophila ProteinsEye ProteinsFinlandNeuronsDrosophila montanata112Behavior AnimalEcologyfungiNeuropeptidesCircadian RhythmCLOCKCryptochromesmedicine.anatomical_structureta1181DrosophilaFemalesense organsNeuronAdaptationNeuroscienceJournal of biological rhythms
researchProduct

Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions

2019

Time-resolved x-ray scattering reveals light-induced signal transduction in insect cryptochromes.

LightProtein ConformationSpectrum AnalysisbanaanikärpänenSciAdv r-articlesfotobiologiaHydrogen BondingHydrogen-Ion ConcentrationMolecular Dynamics SimulationBiochemistryModels BiologicalCryptochromesStructure-Activity RelationshipDrosophila melanogasterCatalytic DomainAnimalsproteiinitResearch ArticlesvuorokausirytmiResearch ArticleSignal TransductionScience Advances
researchProduct

The three-dimensional structure of Drosophila melanogaster (6–4) photolyase at room temperature

2021

A crystal structure of a photolyase at room temperature confirms the structural information obtained from cryogenic crystallography and paves the way for time-resolved studies of the photolyase at an X-ray free-electron laser.

MECHANISMMaterials scienceAbsorption spectroscopyDNA repairfotobiologia02 engineering and technologyCrystal structureREPAIR ACTIVITY03 medical and health sciencesCOLI DNA PHOTOLYASEX-RAY-DIFFRACTIONCryptochromeStructural BiologyAnimalsserial crystallographyCRYSTAL-STRUCTURECRYPTOCHROMEPhotolyaseSERIAL FEMTOSECOND CRYSTALLOGRAPHY030304 developmental biology0303 health sciencesCrystallographyflavoproteinsFADResolution (electron density)TemperaturebanaanikärpänenDNAkidetiede(6-4) photolyase021001 nanoscience & nanotechnologyResearch PapersRADICAL TRANSFER(6–4) photolyaseroom-temperature structureCrystallographyphotolyasesDrosophila melanogasterRECONSTITUTIONX-ray crystallography1182 Biochemistry cell and molecular biologylämpötilaproteiinit0210 nano-technologyDeoxyribodipyrimidine Photo-LyasePHOTOACTIVATIONVisible spectrumActa Crystallographica Section D Structural Biology
researchProduct

Nocturnin in the demosponge Suberites domuncula: a potential circadian clock protein controlling glycogenin synthesis in sponges

2012

Sponges are filter feeders that consume a large amount of energy to allow a controlled filtration of water through their aquiferous canal systems. It has been shown that primmorphs, three-dimensional cell aggregates prepared from the demosponge Suberites domuncula and cultured in vitro , change their morphology depending on the light supply. Upon exposure to light, primmorphs show a faster and stronger increase in DNA, protein and glycogen content compared with primmorphs that remain in the dark. The sponge genome contains nocturnin, a light/dark-controlled clock gene, the protein of which shares a high sequence similarity with the related molecule of higher metazoans. The sponge nocturnin …

Models MolecularAryl hydrocarbon receptor nuclear translocatorGlycogeninPeriod (gene)Circadian clockGene ExpressionBiochemistry03 medical and health sciencesCryptochromeComplementary DNAAnimalsRNA Messenger14. Life underwaterMolecular BiologyDNA PrimersGlycoproteins030304 developmental biology0303 health sciencesBase SequencebiologyCircadian Rhythm Signaling Peptides and Proteins030302 biochemistry & molecular biologyNuclear ProteinsCell Biologybiology.organism_classificationCircadian RhythmSuberites domunculaCLOCKBiochemistryGlucosyltransferasesSuberitesTranscription FactorsBiochem. J.
researchProduct