Search results for "cytotoxic"

showing 10 items of 1673 documents

Imiquimod inhibits growth and induces differentiation of myeloid leukemia cell lines

2018

Background: The antitumoral effects of different Toll-like receptor (TLRs) agonists is mediated by activating immune responses to suppress tumors growth, although TLR ligands may also have a direct effect on tumoral cells. Given that TLR signaling induces hematopoietic cell differentiations this may serve as a novel differentiation therapeutic approach for AML. Methods: We investigated the effects of agonists for the ten human TLRs on the proliferation, apoptosis, cell cycle and differentiation of ten different types of myeloid leukemia cell lines (HL-60, U-937, KG-1, KG-1a, K-562, Kasumi-1, EOL-1, NB4, MOLM-13 and HEL). Proliferation was measured using the CellTiter 96 (R) Aqueous One Solu…

0301 basic medicineCancer ResearchMyeloidImiquimodlcsh:RC254-282Flow cytometry03 medical and health sciences0302 clinical medicineToll-like receptorGeneticsmedicineCytotoxic T cellMyeloid leukemia cell lineslcsh:QH573-671Toll-like receptorImiquimodmedicine.diagnostic_testChemistryCell growthlcsh:CytologyMyeloid leukemiaCell cyclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer researchPrimary Researchmedicine.drugCancer Cell International
researchProduct

Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis

2016

Triple-negative breast cancers (TNBCs) are aggressive forms of breast carcinoma associated with a high rate of recidivism. In this paper, we report the production of mammospheres from three lines of TNBC cells and demonstrate that both parthenolide (PN) and its soluble analog dimethylaminoparthenolide (DMAPT) suppressed this production and induced cytotoxic effects in breast cancer stem-like cells, derived from dissociation of mammospheres. In particular, the drugs exerted a remarkable inhibitory effect on viability of stem-like cells. Such an effect was suppressed by N-acetylcysteine, suggesting a role of reactive oxygen species (ROS) generation in the cytotoxic effect. Instead z-VAD, a ge…

0301 basic medicineCancer ResearchNecrosismedicine.disease_causeCancer -- Treatmentchemistry.chemical_compoundOnium CompoundsMedicineCytotoxic T cellBreast -- CancerMembrane Potential Mitochondrialchemistry.chemical_classificationSuperoxideMitochondrial DNAMitochondriaNeoplastic Stem CellsFemaleOriginal Articlemedicine.symptomOligopeptidesSesquiterpenesCell SurvivalNF-E2-Related Factor 2ImmunologyBreast NeoplasmsReal-Time Polymerase Chain Reaction03 medical and health sciencesCellular and Molecular NeuroscienceDownregulation and upregulationCell Line TumorHumansParthenolideparthenolide cancer stem cell triple-negative breast cancer reactive oxygen species nuclear factor erythroid 2-related factor 2Fluorescent DyesReactive oxygen speciesbusiness.industryAcetophenonesNADPH OxidasesCell BiologyCell nuclei -- AbnormalitiesOxidative Stress030104 developmental biologychemistryApocyninImmunologyCancer researchReactive Oxygen SpeciesbusinessOxidative stressTranscription FactorsCell Death & Disease
researchProduct

Using the r package spatstat to assess inhibitory effects of microregional hypoxia on the infiltration of cancers of the head and neck region by cyto…

2021

Simple Summary Progress in the field of in situ proteomics allows for the simultaneous detection of multiple biomarkers within one cancer tissue specimen. As a result, biological hypotheses previously only assessable ex vivo can now be studied in human cancer tissue. However, methods for objective analysis have so far been lacking behind. In this study, we established a free, objective, and entirely open-source-based method for the analysis of multiplexed immunofluorescence specimens. This will gain further importance with the availability of more advanced multiplexing methods in the future. Abstract (1) Background: The immune system has physiological antitumor activity, which is partially …

0301 basic medicineCancer ResearchOpen-sourcespatial analysisCellBiologyArticle03 medical and health sciences0302 clinical medicineImmune systemmedicineCytotoxic T cellCancer immune evasionHead and neck cancerHypoxiacancer immune evasionRC254-282open-sourceTumor hypoxiaMultichannel im-munofluorescencehypoxiaHead and neck cancerRSpatial analysisNeoplasms. Tumors. Oncology. Including cancer and carcinogensHypoxia (medical)medicine.diseaseCTL*030104 developmental biologymedicine.anatomical_structureOncologymultichannel immunofluorescence030220 oncology & carcinogenesisCancer researchhead and neck cancermedicine.symptomInfiltration (medical)
researchProduct

LC3-Associated Phagocytosis (LAP): A Potentially Influential Mediator of Efferocytosis-Related Tumor Progression and Aggressiveness

2020

One aim of cancer therapies is to induce apoptosis of tumor cells. Efficient removal of the apoptotic cells requires coordinated efforts between the processes of efferocytosis and LC3-associated phagocytosis (LAP). However, this activity has also been shown to produce anti-inflammatory and immunosuppressive signals that can be utilized by live tumor cells to evade immune defense mechanisms, resulting in tumor progression and aggressiveness. In the absence of LAP, mice exhibit suppressed tumor growth during efferocytosis, while LAP-sufficient mice show enhanced tumor progression. Little is known about how LAP or its regulators directly affect efferocytosis, tumor growth and treatment respons…

0301 basic medicineCancer ResearchPhagocytosisReviewtumor cell apoptosislcsh:RC254-28203 medical and health sciences0302 clinical medicinemedicineCytotoxic T cellEfferocytosisefferocytosistumor immune responseTumor microenvironmentbusiness.industrydigestive oral and skin physiologyCancermedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensM2 macrophage activation030104 developmental biologyOncologyApoptosisTumor progression030220 oncology & carcinogenesisCancer cellLAPCancer researchbusinesshuman activitiesFrontiers in Oncology
researchProduct

Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification

2016

Cancer is associated with strong changes in lipid metabolism. For instance, normal cells take up fatty acids (FAs) from the circulation, while tumour cells generate their own and become dependent on de novo FA synthesis, which could provide a vulnerability to target tumour cells. Betulinic acid (BetA) is a natural compound that selectively kills tumour cells through an ill-defined mechanism that is independent of BAX and BAK, but depends on mitochondrial permeability transition-pore opening. Here we unravel this pathway and show that BetA inhibits the activity of steroyl-CoA-desaturase (SCD-1). This enzyme is overexpressed in tumour cells and critically important for cells that utilize de n…

0301 basic medicineCancer ResearchProgrammed cell deathCardiolipinsMitochondrionCell Line03 medical and health scienceschemistry.chemical_compoundSDG 3 - Good Health and Well-beingBetulinic acidGeneticsCardiolipinHumansBetulinic AcidCytotoxicityMolecular BiologyCell DeathbiologyCytochrome cFatty AcidsCytochromes cLipid metabolismAntineoplastic Agents PhytogenicTriterpenesMitochondriaCell biology030104 developmental biologyBiochemistrychemistryCancer cellbiology.protein/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingPentacyclic TriterpenesStearoyl-CoA Desaturase
researchProduct

The secreted protein acidic and rich in cysteine is a critical mediator of cell death program induced by WIN/TRAIL combined treatment in osteosarcoma…

2015

Abstract Secreted protein acidic and rich in cysteine (SPARC) is a multi-functional protein which modulates cell-cell and cell-matrix interactions. In cancer cells, SPARC behaves as a tumor promoter in a number of tumors, but it can also act as a tumor suppressor factor. Our previous results showed that the synthetic cannabinoid WIN55,212-2 (WIN), a potent cannabinoid receptor agonist, is able to sensitize osteosarcoma MG63 cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis which is accompanied with endoplasmic reticulum (ER)-stress induction and the increase in autophagic markers. In the present investigation, we studied the role of SPARC in WIN/TRAIL-induced apoptosi…

0301 basic medicineCancer ResearchProgrammed cell deathCell SurvivalMorpholinesCellSPARC cannabinoids osteosarcoma apoptosis caspase-8 activationApoptosisBone NeoplasmsBiologyNaphthalenesTNF-Related Apoptosis-Inducing Ligand03 medical and health sciences0302 clinical medicineProtein DomainsSettore BIO/10 - BiochimicaCell Line TumormedicineCytotoxic T cellHumansOsteonectinGene SilencingCaspase 8OsteosarcomaOncogeneCell DeathEndoplasmic reticulumCell MembraneCell cycleEndoplasmic Reticulum StressCell biologyBenzoxazines030104 developmental biologymedicine.anatomical_structureOncologyApoptosis030220 oncology & carcinogenesisCancer cellRNA InterferenceInternational journal of oncology
researchProduct

Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines.

2017

ABSTRACT Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treat…

0301 basic medicineCancer ResearchRadiation-Sensitizing AgentsCell SurvivalCellSphingosine kinaseApoptosistemozolomideBiologyRadiation Tolerancesphingosine kinase inhibition03 medical and health scienceschemistry.chemical_compoundCell Line TumorX-raysmedicineHumansGPx1oxidative stressCytotoxicityAutocrine signallingAntineoplastic Agents AlkylatingPharmacologychemistry.chemical_classificationReactive oxygen speciesTemozolomideSphingosineBrain NeoplasmsDrug SynergismChemoradiotherapyMolecular biologyDacarbazinePhosphotransferases (Alcohol Group Acceptor)030104 developmental biologymedicine.anatomical_structureOncologychemistryCell cultureradiosensitivityCancer researchMolecular MedicineDrug Screening Assays AntitumorGlioblastomamedicine.drugResearch PaperCancer biologytherapy
researchProduct

Rational Combination of Parvovirus H1 With CTLA-4 and PD-1 Checkpoint Inhibitors Dampens the Tumor Induced Immune Silencing

2019

The recent therapeutic success of immune checkpoint inhibitors in the treatment of advanced melanoma highlights the potential of cancer immunotherapy. Oncolytic virus-based therapies may further improve the outcome of these cancer patients. A human ex vivo melanoma model was used to investigate the oncolytic parvovirus H-1 (H-1PV) in combination with ipilimumab and/or nivolumab. The effect of this combination on activation of human T lymphocytes was demonstrated. Expression of CTLA-4, PD-1, and PD-L1 immune checkpoint proteins was upregulated in H-1PV-infected melanoma cells. Nevertheless, maturation of antigen presenting cells such as dendritic cells was triggered by H-1PV infected melanom…

0301 basic medicineCancer ResearchRegulatory T cellmedicine.medical_treatmentIpilimumablcsh:RC254-28203 medical and health sciences0302 clinical medicineimmune cellsCancer immunotherapymedicinemelanomaCytotoxic T cellipilimumabAntigen-presenting cellOriginal Researchnivolumabbusiness.industrylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensImmune checkpointH-1PV030104 developmental biologymedicine.anatomical_structureOncologyCTLA-4030220 oncology & carcinogenesisCancer researchimmunotherapyNivolumabbusinessmedicine.drugFrontiers in Oncology
researchProduct

Primary and metastatic brain cancer genomics and emerging biomarkers for immunomodulatory cancer treatment

2018

Abstract: Recent studies with immunomodulatory agents targeting both cytotoxic T-lymphocyte protein 4 (CTLA4) and programmed cell death 1 (PD1)/programmed cell death ligand 1 (PDL1) have shown to be very effective in several cancers revealing an unexpected great activity in patients with both primary and metastatic brain tumors. Combining anti-CTLA4 and anti-PD1 agents as upfront systemic therapy has revealed to further increase the clinical benefit observed with single agent, even at cost of higher toxicity. Since the brain is an immunological specialized area it's crucial to establish the specific composition of the brain tumors' micro environment in order to predict the potential activit…

0301 basic medicineCancer ResearchSettore MED/06 - Oncologia Medicamedicine.medical_treatmentBiomarkers; Brain; CTLA4; Immunotherapy; Metastasis; PD1/PDL1GenomicsMetastasiMetastasisMetastasisImmunomodulation03 medical and health sciences0302 clinical medicinemedicineBiomarkers TumorCytotoxic T cellAnimalsHumansCTLA4Primary (chemistry)business.industryPD1/PDL1Brain NeoplasmsImmunogenicityBrainBiomarkerImmunotherapyGenomicsmedicine.diseaseCancer treatment030104 developmental biology030220 oncology & carcinogenesisToxicityCancer researchImmunotherapyHuman medicinebusinessBiomarkersSeminars in cancer biology
researchProduct

Artesunate Inhibits Growth of Sunitinib-Resistant Renal Cell Carcinoma Cells through Cell Cycle Arrest and Induction of Ferroptosis

2020

Although innovative therapeutic concepts have led to better treatment of advanced renal cell carcinoma (RCC), efficacy is still limited due to the tumor developing resistance to applied drugs. Artesunate (ART) has demonstrated anti-tumor effects in different tumor entities. This study was designed to investigate the impact of ART (1&ndash

0301 basic medicineCancer ResearchTraditional Chinese Medicine (TCM) growth inhibition ferroptosis reactive oxygen species (ROS)Cell cycle checkpointBiologyurologic and male genital diseasesreactive oxygen species (ROS)lcsh:RC254-282Articlegrowth inhibition03 medical and health scienceschemistry.chemical_compound0302 clinical medicinerenal cell carcinoma (RCC)medicineClonogenic assayCytotoxicityartesunate (ART)SunitinibTraditional Chinese Medicine (TCM)Cell cyclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensferroptosissunitib resistance030104 developmental biologyOncologychemistryCell cultureApoptosis030220 oncology & carcinogenesisCancer researchGrowth inhibitionmedicine.drugCancers
researchProduct