Search results for "dark-matter"

showing 10 items of 22 documents

Unveiling the environment and faint features of the isolated galaxy CIG 96 with deep optical and HI observations

2018

Context. Asymmetries in atomic hydrogen (HI) in galaxies are often caused by the interaction with close companions, making isolated galaxies an ideal framework to study secular evolution. The AMIGA project has demonstrated that isolated galaxies show the lowest level of asymmetry in their HI integrated profiles compared to even field galaxies, yet some present significant asymmetries. CIG 96 (NGC 864) is a representative case reaching a 16% level. Aims. Our aim is to investigate the HI asymmetries of the spiral galaxy CIG 96 and what processes have triggered the star-forming regions observed in the XUV pseudo-ring. Methods. We performed deep optical observations at CAHA1.23m, CAHA2.2m and V…

galaxies: spiralHIERARCHICAL SATELLITE ACCRETIONmedia_common.quotation_subjectFOS: Physical sciencesAstrophysicsI.01 natural sciences7. Clean energyAsymmetryAMIGA SAMPLElaw.inventionTelescopelaw0103 physical scienceskinematics and dynamics [galaxies]DARK-MATTER SUBSTRUCTURESurface brightness010303 astronomy & astrophysicsStellar evolutionComputingMilieux_MISCELLANEOUSevolution [galaxies]galaxies: kinematics and dynamicsLOPSIDED SPIRAL GALAXIESmedia_commonindividual: NGC 864 [galaxies]Physicsradio lines: galaxiesSpiral galaxy010308 nuclear & particles physicsgalaxies: individual: NGC864Astronomy and AstrophysicsDISK GALAXIESAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Galaxygalaxies [radio lines]RINGSTIDAL STREAMspiral [galaxies][SDU]Sciences of the Universe [physics]Space and Planetary ScienceGASAstrophysics of Galaxies (astro-ph.GA)structure [galaxies]galaxies: structureDIGITAL SKY SURVEYCirrusGalaxies: Individual: NGC 864galaxies: evolutionAstronomy & astrophysics
researchProduct

Searches for lepton number violation and resonances in K± → πμμ decays

2017

The NA48/2 experiment at CERN collected a large sample of charged kaon decays to final states with multiple charged particles in 2003–2004. A new upper limit on the rate of the lepton number violating decay K±→π∓μ±μ± is reported: B(K±→π∓μ±μ±)<8.6×10−11 at 90% CL. Searches for two-body resonances X in K±→πμμ decays (such as heavy neutral leptons N4 and inflatons χ ) are also presented. In the absence of signals, upper limits are set on the products of branching fractions B(K±→μ±N4)B(N4→πμ) and B(K±→π±X)B(X→μ+μ−) for ranges of assumed resonance masses and lifetimes. The limits are in the (10−11,10−9) range for resonance lifetimes below 100 ps.

leptonBEAM01 natural sciences7. Clean energyPhysics Particles & FieldsHigh Energy Physics - ExperimentLIMITSkaon physicsCERNIntermediate statelepton number violation neutrinos dark matter kaon physicsPhysicsVMSMLarge Hadron ColliderPhysicsCharge KaonsneutrinosNuclear and High Energy Physics; CERN; leptonsHigh Energy Physics - Experiment; Charge Kaons; Lepton number violationNuclear & Particles PhysicsCharged particlelcsh:QC1-999NEUTRAL HEAVY-LEPTONSPhysics Nuclearlepton number violationPhysical SciencesParticle physicsNuclear and High Energy Physicsleptonskaon decays lepton number violationNuclear and High Energy Physics lepton kaon meson lepton number violation NA48Socio-culturaleAstronomy & AstrophysicsUPPER-BOUNDSdark matterNuclear physics0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciencesDARK-MATTERPARTICLES010306 general physicsScience & Technologykaon decays010308 nuclear & particles physicsBranching fractionResonanceInflatonLepton numberkaon mesonNA48High Energy Physics::Experimentlcsh:PhysicsLepton
researchProduct

Review of Particle Physics

2020

The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, …

high energyleptonmixing [neutrino]High Energy Physics::LatticeCosmic microwave backgrounddiffractionTechnicolorAstrophysicsOmega01 natural sciencesPhysics Particles & Fieldshiggs-boson productionBig Bang nucleosynthesiscosmological model: parameter spacetaudark energyMonte CarlofieldspentaquarkinstrumentationSettore FIS/01gauge bosonAnomalous magnetic dipole momentdeep-inelastic scatteringnew physicsPhysicsDOUBLE-BETA-DECAYElectroweak interactiondensity [dark matter]HEAVY FLAVOURQuarkoniumreview; particle; physicsSUPERSYMMETRIC STANDARD MODELsquare-root-sPhysics Nucleargrand unified theoryboson: heavystatisticsPhysical SciencesHiggs bosonaxion: massflavor: violationNeutrinoELECTROWEAK SYMMETRY-BREAKINGnumerical calculations: Monte Carlophysicson-lineS013EPHQuarkheavy [boson]particle[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Physics Multidisciplinaryanomalous magnetic-momentelectroweak radiative-correctionsdark matter: densityHiggs particlemesonneutrino masses neutrino mixing; neutrino oscillations114 Physical sciencesCHIRAL PERTURBATION-THEORYneutrino mixingStandard Modelquark0202 Atomic Molecular Nuclear Particle And Plasma PhysicsNucleosynthesisquantum chromodynamicsCP: violationDark matterddc:530particle physicsStrong Interactions010306 general physicssparticleS013DFgrand unified theoriesPRODUCTIONGauge bosonScience & Technologyneutrino oscillationsneutrino masses010308 nuclear & particles physicsC50 Other topics in experimental particle physicsParticle Data GroupAstronomy and AstrophysicsDeep inelastic scatteringto-leading-order* Automatic Keywords *heavy bosonaxiontables (particle physics)Tetraquarkproton-proton collisionsSupersymmetryhadronneutrino: mixing[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyVolume (compression)HIGGS-BOSONUB-VERTICAL-BARcosmological modeldark energy densityexperimental methodsddc:539.72021Physics beyond the Standard Modelstandard modelgroup theoryGeneral Physics and Astronomytables particle physicshigh energy physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum chromodynamicsPhysicsenergy: highE Rev 2016[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Settore FIS/01 - Fisica SperimentalephotonSupersymmetryNuclear & Particles Physicsparameter space [cosmological model]dark energy: densityhigh [energy]M013WXfermion-pair productionNuclear and High Energy PhysicsParticle physicsHiggs bosonreviewAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysics530dark matterstatistical analysisDouble beta decay0103 physical sciencesconservation lawcold dark-matterTAU LEPTONSAstrophysics::Galaxy AstrophysicstablesDEEP-INELASTIC-SCATTERINGelectroweak interactionHigh Energy Physics::Phenomenology750 GeV diphoton excessPRODUCTION CROSS-SECTIONbaryondensity [dark energy]Physics and AstronomygravitationCKM matrix[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentsupersymmetryMinimal Supersymmetric Standard Model
researchProduct

Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

2013

A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the resul…

AstrofísicaParticle physicsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysicsAstrophysicsNeutrino telescope01 natural sciences7. Clean energylaw.inventionMUONSTelescopeGAMMA-RAY HAZESIGNALSlaw0103 physical sciencesDARK-MATTER14. Life underwaterFermi BubblesKM3NeT010303 astronomy & astrophysicsUNDERWATER CHERENKOV NEUTRINO TELESCOPESNeutrino telescope; Fermi Bubbles; KM3NeTHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomy and AstrophysicsINGENIERIA TELEMATICAkm3net; fermi bubbles; neutrino telescopeKM3NeTNeutrino detector[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFermi BubbleFermi Gamma-ray Space TelescopeAstroparticle Physics
researchProduct

Physics at a future Neutrino Factory and super-beam facility

2009

The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, …

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsPhysics::Instrumentation and DetectorsMUONIUM-ANTIMUONIUM CONVERSIONFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2LONG-BASE-LINE01 natural sciences7. Clean energyWARM DARK-MATTERNuclear physicsLEPTON-FLAVOR VIOLATIONELECTRIC-DIPOLE MOMENTHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ANOMALOUS MAGNETIC-MOMENT010306 general physicsNeutrino oscillationNeutrino physics; Neutrino factoryParticle Physics - PhenomenologyR-PARITY VIOLATIONPhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]LARGE EXTRA DIMENSIONSDOUBLE-BETA-DECAYNeutrino factoryFísicaMU-E CONVERSIONNeutrino physicsHigh Energy Physics - PhenomenologyExperimental High Energy PhysicsLarge extra dimensionCP violationPhysics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentNeutrino
researchProduct

(Standard model) universe dominated by the right matter

2009

14 pages, 3 figures. References on late time enthropy release included, several points clarified. PACS numbers: 14.60.Pq, 98.80.Cq. ArXiv pre-print available at http://arxiv.org/abs/0806.4389

AstrofísicaPhysicsNuclear and High Energy PhysicsParticle physicsGrand-Unified-TheoryDark-MatterHigh Energy Physics::PhenomenologyElectroweak interactionDark matterBaryogenesisFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsTime Entropy ProductionBaryogenesisBaryon asymmetryDecaying ParticlesConstraintsHigh Energy Physics::ExperimentGravitinoNeutrinoNeutrino MassNeutrino oscillationPhenomenology (particle physics)Inflationary UniversePhysical Review D
researchProduct

Long-lived particles at the energy frontier: the MATHUSLA physics case

2019

We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $\mu$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging …

Physics::Instrumentation and DetectorsPhysics beyond the Standard ModelHEAVY MAJORANA NEUTRINOSGeneral Physics and Astronomy01 natural sciencesMathematical SciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NaturalnessCERN LHC Coll: upgrade[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: masslong-lived particlesPhysicsLarge Hadron Collidernew physicsCMShierarchy problemneutrinosHierarchy problemhep-phATLASDARK-MATTER SEARCHESCOSMIC-RAYSmissing-energyHigh Energy Physics - PhenomenologyLarge Hadron ColliderPhysical SciencesNeutrinoLIGHT HIGGS-BOSONParticle Physics - ExperimentParticle physicsGeneral PhysicsSTERILE NEUTRINOSPHI-MESON DECAYSnucleosynthesis: big bangDark matterFOS: Physical sciencesEXTENSIVE AIR-SHOWERSdark matterVECTOR GAUGE BOSON0103 physical sciences010306 general physicsnumerical calculationsParticle Physics - PhenomenologyLEFT-RIGHT SYMMETRYMissing energyhep-exbackgroundBaryogenesisdark matter: detectortriggersensitivityBaryogenesis[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]simplified modelsDOUBLE-BETA DECAYparticle: long-lived
researchProduct

Search for heavy neutrinos with the T2K near detector ND280

2019

This paper reports on the search for heavy neutrinos with masses in the range 140<MN<493  MeV/c2 using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are N→ℓ±απ∓ and N→ℓ+αℓ−β(−)ν(α,β=e,μ). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heav…

decay modes [neutrino]GENERAL-THEORYmixing [neutrino]Physics::Instrumentation and Detectorsneutrino: heavy: search forKAMIOKANDE01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsHigh Energy Physics - Experiment (hep-ex)LIMITSsecondary beam [neutrino/mu]neutrino: decay modes[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massmedia_commonPhysicsVMSMJ-PARC LabPhysicsstatistical analysis: BayesianK: decayheavy neutrinos T2K Experiment Time Projection Chambersmass dependenceGeneral theoryT2K ExperimentTime Projection ChambersPhysical SciencesChristian ministrydata analysis methodFOS: Physical sciencesLibrary scienceheavy: search for [neutrino]Astronomy & AstrophysicsBayesian [statistical analysis]530near detector0103 physical sciencesDARK-MATTERmedia_common.cataloged_instanceddc:530Early careerEuropean unionS077A00010306 general physicsS077A01heavy neutrinosScience & Technology010308 nuclear & particles physicsbackgroundhep-exHigh Energy Physics::PhenomenologyFísicaneutrino/mu: secondary beamtime projection chamberdecay [K]mass [neutrino]Hypothetical particle physics models Particle phenomenaHigh Energy Physics::Experimentneutrino: mixingstatisticalexperimental resultsPhysical Review D
researchProduct

New horizons for fundamental physics with LISA

2022

K. G. Arun et al.

AstrofísicaPROTOPLANET MIGRATIONFísica-Modelos matemáticosPhysics and Astronomy (miscellaneous)gr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)GRAVITATIONAL-WAVEShorizonFundamental physicGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational wavesLIGO (Observatory)Tests of general relativitySettore FIS/05 - Astronomia e AstrofisicaDARK-MATTERFísica matemáticaKOZAI MECHANISMHigh Energy PhysicsGENERAL-RELATIVITYFundamental physics; Gravitational waves; LISA; Tests of general relativityFundamental physicsPRIMORDIAL BLACK-HOLESLISAScience & TechnologyGeneral Relativity and Cosmology83CXXPhysicsgravitation: interactiongravitational radiationFísicaCompactQUANTUM-GRAVITYPhysical SciencesAstronomia[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]fundamental physics; gravitational waves; LISA; test of general relativityMODIFIED GRAVITYtest of general relativityGravitational waveMULTIPOLE MOMENTSHUBBLE CONSTANT
researchProduct

Reheating the Standard Model from a hidden sector

2016

We consider a scenario where the inflaton decays to a hidden sector thermally decoupled from the visible Standard Model sector. A tiny portal coupling between the hidden and the visible sectors later heats the visible sector so that the Standard Model degrees of freedom come to dominate the energy density of the Universe before Big Bang Nucleosynthesis. We find that this scenario is viable, although obtaining the correct dark matter abundance and retaining successful Big Bang Nucleosynthesis is not obvious. We also show that the isocurvature perturbations constituted by a primordial Higgs condensate are not problematic for the viability of the scenario.

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Ultimate fate of the universereheatingmedia_common.quotation_subjectDark matterUNIVERSEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesdark matterdecouplingpimeä aineHigh Energy Physics - Phenomenology (hep-ph)INFLATIONBig Bang nucleosynthesis0103 physical sciencesDARK-MATTERELECTROWEAK VACUUM010306 general physicsmedia_commonPhysicsQuintom scenariota114STABILITY010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDecoupling (cosmology)InflatonHIGGSUniverseHidden sectorextensions of the Standard ModelHigh Energy Physics - Phenomenologyhidden sectorsSCALARAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct