Search results for "ddc:5"

showing 10 items of 1717 documents

High-spin → low-spin relaxation in the two-step spincrossover compound [Fe(pic)3]Cl2EtOH (pic = 2-picolylamine)

1998

Abstract The spin-crossover compound [Fe(pic) 3 ]Cl 2 EtOH (pic = 2-picolylamine) shows an unusual two-step spin transition. This is thought to be caused by specific nearest-neighbour interactions and short-range correlations and requires a theoretical treatment of the elastic interactions between the spin-changing molecules beyond the mean-field approximation. Such short-range correlations also influence the high-spin → low-spin relaxation following the light-induced population of the high-spin state at cryogenic temperatures, leading to characteristic deviations from the predictions of a mean-field treatment. These deviations are directly observable by comparison of the full and unperturb…

education.field_of_studyAbsorption spectroscopyCondensed matter physicsChemistryPopulationMonte Carlo methodSpin transitionObservableGeneral ChemistryFe(II) compundsCondensed Matter PhysicsMolecular physicsHigh spin-low spin relaxationddc:540Relaxation (physics)MoleculeGeneral Materials ScienceeducationTwo-step spin transitionSpin-½Journal of Physics and Chemistry of Solids
researchProduct

Monitoring surface resonances on Co2MnSi(100) by spin-resolved photoelectron spectroscopy

2015

The magnitude of the spin polarization at the Fermi level of ferromagnetic materials at room temperature is a key property for spintronics. Investigating the Heusler compound Co$_2$MnSi a value of 93$\%$ for the spin polarization has been observed at room temperature, where the high spin polarization is related to a stable surface resonance in the majority band extending deep into the bulk. In particular, we identified in our spectroscopical analysis that this surface resonance is embedded in the bulk continuum with a strong coupling to the majority bulk states. The resonance behaves very bulk-like, as it extends over the first six atomic layers of the corresponding (001)-surface. Our study…

Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesddc:530Condensed Matter::Strongly Correlated Electrons
researchProduct

On Infiltration and Infiltration Characteristic Times

2022

In his seminal paper on the solution of the infiltration equation, Philip (1969), https://doi.org/10.1016/b978-1-4831-9936-8.50010-6 proposed a gravity time, tgrav, to estimate practical convergence time and the time domain validity of his infinite time series expansion, TSE, for describing the transient state. The parameter tgrav refers to a point in time where infiltration is dominated equally by capillarity and gravity as derived from the first two (dominant) terms of the TSE. Evidence suggests that applicability of the truncated two-term equation of Philip has a time limit requiring higher-order TSE terms to better describe the infiltration process for times exceeding that limit. Since …

Science & TechnologyEROSIONsorptivityHYDRAULIC CONDUCTIVITYINFILTROMETERInfiltrationEnvironmental Sciences & EcologyPARAMETERSSOILMODELPhysical SciencesLimnology[SDE]Environmental Sciencesddc:550Water ResourcesEQUATIONSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliWATERsteady statetime domain validityMarine & Freshwater BiologyLife Sciences & Biomedicinehydraulic conductivityEnvironmental SciencesWater Science and Technology
researchProduct

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and Ic…

2019

[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…

Astrofísicacollapse [supernova]neutron star: binaryEVENTS GW150914Gravitació010504 meteorology & atmospheric sciencesneutrino: energy: highAstronomyRAYBinary numberbinary [neutron star]Astrophysics7. Clean energy01 natural sciencesPhysical ChemistryAtomicIceCubeneutrinoParticle and Plasma PhysicsAstronomi astrofysik och kosmologiblack holeAstronomy Astrophysics and CosmologyLIGO010303 astronomy & astrophysicsgravitational waveELECTROMAGNETIC SIGNALSQCQBSettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HE[PHYS]Physics [physics]Astrophysics::Instrumentation and Methods for Astrophysicsneutrinosgravitational waves; neutrinos520 Astronomie und zugeordnete Wissenschaftenddc:observatorySupernovagravitational wavesastrophysics: densityPhysical SciencesNeutrinoAstrophysics - High Energy Astrophysical Phenomenagravitational waves; neutrinos; Astronomy and Astrophysics; Space and Planetary ScienceAstronomical and Space SciencessignaturePhysical Chemistry (incl. Structural)supernova: collapseAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsGravitational wavesemission [gravitational radiation]Ones gravitacionalsCoincident0103 physical sciencesGravitational Waves Neutrinos LIGO Virgo Antares IceCubeNuclearddc:530Neutrinsenergy: high [neutrino]NeutrinosSTFCAstrophysiqueAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyANTARESGravitational waveVirgoOrganic ChemistryAstronomyRCUKMolecularAstronomy and AstrophysicsAstronomieAstronomy and Astrophysic530 PhysikLIGOSciences de l'espaceBlack holemessengerNeutron starAntaresPhysics and AstronomySpace and Planetary ScienceFISICA APLICADA:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]gravitational radiation: emissiondensity [astrophysics]ddc:520[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]EMISSION
researchProduct

Response of AGATA segmented HPGe detectors to gamma rays up to 15.1MeV

2013

WOS: 000314826000009

AGATA; Gamma-ray spectroscopy; Gamma-ray tracking; HPGe detectors; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulationsNuclear and High Energy PhysicsPulse-shape and gamma-ray tracking algorithmsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSemiconductor detector performance and simulationsTracking (particle physics)01 natural sciencesNuclear physicsGamma-ray tracking0103 physical sciencesGamma spectroscopyddc:530Gamma-ray spectroscopyNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentDetectors de radiacióPhysicsSpectrometer010308 nuclear & particles physicsDetectorHPGe detectorsGamma ray81V35Semiconductor detectorAGATAFísica nuclearHpge detectorAGATA
researchProduct

Heavy quarkonium: progress, puzzles, and opportunities

2011

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flo…

High Energy Physics - TheoryNuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeTevatronB-C MESON; QCD SUM-RULES; NUCLEUS COLLISIONSAtomic01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Broad spectrumHigh Energy Physics - Phenomenology (hep-ph)Particle and Plasma Physicseffective field theoryBatavia TEVATRON CollNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBrookhaven RHIC CollQuantum chromodynamicsPhysicsQuantum PhysicsLarge Hadron ColliderHigh Energy Physics - Lattice (hep-lat)lattice field theoryHERAQuarkoniumNuclear & Particles PhysicsCLEOB-C MESONHigh Energy Physics - PhenomenologyDESY HERA Stordecay [quarkonium]Jefferson LabParticle physicsFOS: Physical sciencesnonrelativistic [quantum chromodynamics]DeconfinementB-factoryNuclear Theory (nucl-th)High Energy Physics - Latticescattering [heavy ion]QCD SUM-RULES0103 physical sciencesNuclearddc:530010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyproduction [quarkonium]BES010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyplasma [quark gluon]FísicaMoleculartetraquarkHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]hadron spectroscopy [meson]hadron spectroscopy [quarkonium]High Energy Physics::Experimentheavy [quarkonium]NUCLEUS COLLISIONSThe European Physical Journal C
researchProduct

Low temperature X-ray absorption spectroscopy study of $CuMoO_{4}$ and $CuMo_{0.90}W_{0.10}O_4$ using reverse Monte-Carlo method

2020

Radiation physics and chemistry 175, 108411 (2020). doi:10.1016/j.radphyschem.2019.108411

Phase transitionX-ray absorption spectroscopyRadiationMaterials scienceAbsorption spectroscopyExtended X-ray absorption fine structureCuMoO4010308 nuclear & particles physicsX-ray absorption spectroscopyReverse Monte CarloAtmospheric temperature range01 natural sciencesMolecular physics530XANESXANES030218 nuclear medicine & medical imaging03 medical and health sciencesEXAFS0302 clinical medicine0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]ddc:530Reverse Monte CarloAbsorption (electromagnetic radiation)
researchProduct

Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector

2019

This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02  TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73  nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3  GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…

Photonheavy ion: scatteringmass spectrum: (2photon)Physics::Instrumentation and Detectorsmeasured [channel cross section]General Physics and Astronomytransverse energy [photon]nucl-ex01 natural sciencesLight scatteringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Scattering processPseudorapidities[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massCollisionsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentelastic scattering [photon photon]Physicsphoton: transverse energyproton–proton collisionsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollPseudorapidityTransverse momentalight-by-light scatteringLHCchannel cross section: measuredParticle Physics - Experimentrelativistic heavy-ion collisionsjets(2photon) [mass spectrum]Transverse energyCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesATLAS experimentddc:500.2LHC ATLAS High Energy Physicstransverse momentumplanarity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Relativistic heavy ions530AcoplanarityNuclear physicsscattering [heavy ion]Delbrück scattering0103 physical sciencesStandard deviationNuclear Physics - Experimentddc:5305020 GeV-cms/nucleonSelection criteria010306 general physicsperipheralCiencias Exactastwo-photon [mass spectrum]Integrated luminosityleadScience & Technologyhep-exrapidity [photon]Scatteringbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Físicaphoton: rapidityElementary Particles and FieldsHigh Energy Physics::Experimentphoton photon: elastic scatteringmass spectrum: two-photonexperimental results
researchProduct

Search for Standard Model Higgs Boson Production in Association with a W Boson at CDF

2012

We present a search for the standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp̅ →W±H→ℓνbb̅ ) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector which correspond to an integrated luminosity of approximately 2.7  fb-1. We recorded this data with two kinds of triggers. The first kind required high-pT charged leptons and the second required both missing transverse energy and jets. The search selects events consistent with a signature of a single lepton (e±/μ±), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method and a…

QuarkNuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencesddc:500.2Astronomy & Astrophysics;; Physics Particles & Fields01 natural sciencesStandard ModelHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)13.85.Rm 14.80.Bn0103 physical sciencesFilter technique[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsLuminosity (scattering theory)Mass distribution010308 nuclear & particles physicsBranching fractionPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyVertex (geometry)Higgs boson_Production (computer science)High Energy Physics::ExperimentCenter of massLepton
researchProduct

Macroscopic persistent currents in YBa2Cu3O7

1988

Persistent currents in polycrystalline YBa2Cu3O7 rings have been investigated by measuring the spatial distribution of the magnetic flux trapped in field-cooled samples. The results unambiguously show that macroscopic persistent ring currents exist. The critical current density depends very sensitively on the sample quality, reachingj c ≈250 A/cm2 at 77 K for our best samples.

chemistry.chemical_classificationMaterials scienceHigh-temperature superconductivityCondensed matter physicspacs:68.35.JaPersistent currentCondensed Matter PhysicsRing (chemistry)Magnetic fluxElectronic Optical and Magnetic Materialslaw.inventionSample qualitychemistrypacs:67.70.+nlawCondensed Matter::Superconductivityddc:530General Materials ScienceCrystalliteCritical currentpacs:61.12.ExInorganic compoundZeitschrift f�r Physik B Condensed Matter
researchProduct