Search results for "decoupling"
showing 10 items of 87 documents
Majorons: a simultaneous solution to the large and small scale dark matter problems
1984
Abstract It is shown that the existence of majorons, which enable a heavy neutrino, 500 eV ≲ mνH ≲ 25 keV to decay into a light neutrino mνL ≲ 8 eV and a majoron, with lifetime 104 yr ≲ τνH ≲ 108 yr can solve both the large and small scale dark matter problems. For a primordial “Zeldovich” spectrum of fluctuations the limits are m v H ≲ 550 eV and τ v H > 107 to 108 yr (the ranges mνH ≲ eV and τνH ≳ 108 yr are allowed by the model but galaxy formation becomes problematic). The large scale dark matter problem is how to achieve the critical density as implied by inflation, the small scale problems deal with the halos of galaxies and galaxy formation and perturbation growth. The heavy neutrino…
Lepton number asymmetries and the lower bound on the reheating temperature
2017
We show that the reheating temperature of a matter-domination era in the early universe can be pushed down to the neutrino decoupling temperature at around $2 \ {\rm MeV}$ if the reheating takes place through non-hadronic decays of the dominant matter and neutrino-antineutrino asymmetries are still large enough, $|L| \gtrsim \mathcal{O}(10^{-2})$ (depending on the neutrino flavor) at the end of reheating.
Modeling of a tunable-barrier non-adiabatic electron pump beyond the decay cascade model
2014
We generalize the decay cascade model of charge capture statistics for a tunable-barrier non-adiabatic electron pump dominated by the backtunneling error at the quantum dot decoupling stage. The energy scales controlling the competition between the thermal and the dynamical mechanisms for accurate trapped charge quantization are discussed. Empirical fitting formula incorporating quantum dot re-population errors due to particle-hole fluctuations in the source lead is suggested and tested against an exactly solvable rate equation model.
Further Comments on a Vanishing Singlet Axial Vector Charge
1998
The recent suggestion of a vanishing flavor-singlet axial charge of nucleon due to a nontrivial vacuum structure is further amplified. A perturbative QCD discussion, applicable for the heavy quark contributions, relates it to the physics of the decoupling theorem. It is also shown that $g_{A}^{0}\simeq 0$ leads to a negative $\eta'$-meson-quark coupling, which has been found to be compatible with the chiral quark model phenomenology.
Microscopic description of dissipative dynamics of a level-crossing transition
2011
We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics…
Event-Driven Simulation of the Dynamics of Hard Ellipsoids
2008
We introduce a novel algorithm to perform event-driven simulations of hard rigid bodies of arbitrary shape, that relies on the evaluation of the geometric distance. In the case of a monodisperse system of uniaxial hard ellipsoids,we perform molecular dynamics simulations varying the aspect-ratio X0 and the packing fraction phi. We evaluate the translational Dtrans and the rotational Drot diffusion coefficient and the associated isodiffusivity lines in the phi-X0 plane. We observe a decoupling of the translational and rotational dynamics which generates an almost perpendicular crossing of the Dtrans and Drot isodiffusivity lines. While the self intermediate scattering function exhibits stret…
Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
2021
We introduce a decoupling method on the Wiener space to define a wide class of anisotropic Besov spaces. The decoupling method is based on a general distributional approach and not restricted to the Wiener space. The class of Besov spaces we introduce contains the traditional isotropic Besov spaces obtained by the real interpolation method, but also new spaces that are designed to investigate backwards stochastic differential equations (BSDEs). As examples we discuss the Besov regularity (in the sense of our spaces) of forward diffusions and local times. It is shown that among our newly introduced Besov spaces there are spaces that characterize quantitative properties of directional derivat…
Trajectory robust control of autonomous quadcopters based on model decoupling and disturbance estimation
2021
In this article, a systematic procedure is given for determining a robust motion control law for autonomous quadcopters, starting from an input–output linearizable model. In particular, the suggested technique can be considered as a robust feedback linearization (FL), where the nonlinear state-feedback terms, which contain the aerodynamic forces and moments and other unknown disturbances, are estimated online by means of extended state observers. Therefore, the control system is made robust against unmodelled dynamics and endogenous as well as exogenous disturbances. The desired closed-loop dynamics is obtained by means of pole assignment. To have a feasible control action, that is, the fo…
Unitary decoupling treatment of a quadratic bimodal cavity quantum electrodynamics model
2013
We consider a two-photon quantum model of radiation–matter interaction between a single two-level atom and a degenerate bimodal high-Q cavity field. Within this tripartite system, the explicit construction of two collective radiation modes, one of which is freely evolving and the other one quadratically coupled to the matter subsystem, is reported. The meaning and advantages of such a decoupling treatment are carefully discussed.
The Weak-Magnetic Moment of Heavy Quarks
1997
With initial and final particles on-shell, the anomalous weak-magnetic dipole moments of b and c quarks are electroweak gauge invariant quantities of the effective couplings Zb\bar{b} and Zc\bar{c}, respectively, and good candidates to test the Standard Model and/or new physics. Here we present a complete computation of these quantities within the Standard Model. We show that decoupling properties with respect to heavy particles do take place in the weak magnetic moment. The obtained values, a_b(M_Z^2)=(2.98-1.56i)x10^(-4) and a_c(M_Z^2)=(-2.80+1.09i)x10^(-5) are dominated by one-gluon exchange diagrams. The electroweak corrections are less than 1% of the total magnitude.