Search results for "deep learning"

showing 10 items of 337 documents

Deep neural networks leveraging different arrangements of molecular fingerprints to define a novel embedding for virtual screening procedure

2022

EMBERSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniVirtual ScreeningDeep LearningDrug DiscoveryMolecular Fingerprint
researchProduct

Design and Implementation of Deep Learning Based Contactless Authentication System Using Hand Gestures

2021

Hand gestures based sign language digits have several contactless applications. Applications include communication for impaired people, such as elderly and disabled people, health-care applications, automotive user interfaces, and security and surveillance. This work presents the design and implementation of a complete end-to-end deep learning based edge computing system that can verify a user contactlessly using &lsquo

Edge deviceComputer Networks and CommunicationsComputer scienceSpeech recognitionlcsh:TK7800-8360securitySign languageVDP::Teknologi: 500::Elektrotekniske fag: 540edge computingCode (cryptography)ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSElectrical and Electronic EngineeringEdge computingAuthenticationhand gestures recognitionArtificial neural networkbusiness.industryDeep learninglcsh:Electronicsdeep learningneural networkscontactless authenticationHardware and ArchitectureControl and Systems Engineeringcamera based authenticationSignal ProcessingArtificial intelligencebusinessGesture
researchProduct

Towards a Deep Reinforcement Learning Approach for Tower Line Wars

2017

There have been numerous breakthroughs with reinforcement learning in the recent years, perhaps most notably on Deep Reinforcement Learning successfully playing and winning relatively advanced computer games. There is undoubtedly an anticipation that Deep Reinforcement Learning will play a major role when the first AI masters the complicated game plays needed to beat a professional Real-Time Strategy game player. For this to be possible, there needs to be a game environment that targets and fosters AI research, and specifically Deep Reinforcement Learning. Some game environments already exist, however, these are either overly simplistic such as Atari 2600 or complex such as Starcraft II fro…

EntertainmentCognitive sciencebusiness.industryComputer scienceDeep learningComputingMilieux_PERSONALCOMPUTINGQ-learningReinforcement learningArtificial intelligencebusinessGame player
researchProduct

Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques

2021

A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contamin…

Envasos de plàsticComputer sciencehyperspectral imagingComputer applications to medicine. Medical informaticsR858-859.7Convolutional neural networkArticleDeep belief networkPhotographyRadiology Nuclear Medicine and imagingElectrical and Electronic EngineeringTR1-1050Extreme learning machineImage fusiondata fusionbusiness.industryDeep learningHyperspectral imagingdeep learningPattern recognitionAliments ConservacióQA75.5-76.95Sensor fusionComputer Graphics and Computer-Aided DesignAutoencoderfault detectionElectronic computers. Computer scienceComputer Vision and Pattern RecognitionArtificial intelligenceTecnologia dels alimentsbusinessfood packagingJournal of Imaging
researchProduct

DEVELOPMENT AND IMPLEMENTATION OF MACHINE LEARNING METHODS FOR THE IIF IMAGES ANALYSIS

2021

FEATURES EXTRACTIONSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniACTIVE CONTOURS MODELFINE-TUNINGDEEP LEARNINGSettore ING-INF/03 - TelecomunicazioniSVMHOUGH TRANSFORMMULTI-CLASS CLASSIFICATIONHEP-2 CELLSIMAGE PREPROCESSINGAUTOIMMUNE DISEASESMACHINE LEARNINGCELLS SEGMENTATIONROC CURVECNNIIF TEST
researchProduct

Automatic image-based identification and biomass estimation of invertebrates

2020

1. Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. 2. We describe a robot-enabled image-based ident…

FOS: Computer and information sciences0106 biological sciencesclassification (action)Computer Science - Machine Learninghahmontunnistus (tietotekniikka)Computer scienceImage qualityComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognitionclassificationsmodelling (creation related to information)neuroverkot01 natural sciencesConvolutional neural networkcomputer visionMachine Learning (cs.LG)remote sensingAbundance (ecology)Statistics - Machine Learningkonenäköinsectstunnistaminenbiodiversitysystematiikka (biologia)Ecological ModelingSortingselkärangattomatneural networksmuutosjohtaminenautomated pattern recognitionIdentification (information)machine learningkoneoppiminenclassificationEcosystem managementhämähäkitrecognitionmallintaminenneural networks (information technology)Machine Learning (stat.ML)010603 evolutionary biologyspidersidentifiointilajitsystematicsluokituksetEcology Evolution Behavior and Systematicsluokitus (toiminta)tarkkuusbusiness.industry010604 marine biology & hydrobiologyDeep learningPattern recognitiontypes and speciesidentification (recognition)15. Life on land113 Computer and information sciencesecosystems (ecology)invertebratesbiodiversiteettiekosysteemit (ekologia)hyönteisetidentificationprecisionkaukokartoitusArtificial intelligencechange management (leadership)businessScale (map)
researchProduct

Polarimetric image augmentation

2021

Robotics applications in urban environments are subject to obstacles that exhibit specular reflections hampering autonomous navigation. On the other hand, these reflections are highly polarized and this extra information can successfully be used to segment the specular areas. In nature, polarized light is obtained by reflection or scattering. Deep Convolutional Neural Networks (DCNNs) have shown excellent segmentation results, but require a significant amount of data to achieve best performances. The lack of data is usually overcomed by using augmentation methods. However, unlike RGB images, polarization images are not only scalar (intensity) images and standard augmentation techniques cann…

FOS: Computer and information sciences0209 industrial biotechnologyAugmentation procedurebusiness.industryComputer Vision and Pattern Recognition (cs.CV)Deep learningComputer Science - Computer Vision and Pattern RecognitionPolarimetryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]02 engineering and technologyImage segmentationConvolutional neural networkData modeling[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020901 industrial engineering & automation0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionSegmentationArtificial intelligenceSpecular reflectionbusiness
researchProduct

Explaining the unique nature of individual gait patterns with deep learning

2019

Machine learning (ML) techniques such as (deep) artificial neural networks (DNN) are solving very successfully a plethora of tasks and provide new predictive models for complex physical, chemical, biological and social systems. However, in most cases this comes with the disadvantage of acting as a black box, rarely providing information about what made them arrive at a particular prediction. This black box aspect of ML techniques can be problematic especially in medical diagnoses, so far hampering a clinical acceptance. The present paper studies the uniqueness of individual gait patterns in clinical biomechanics using DNNs. By attributing portions of the model predictions back to the input …

FOS: Computer and information sciencesAdultMaleComputer Science - Machine Learninglcsh:Rlcsh:MedicineMachine Learning (stat.ML)Healthy VolunteersArticleMachine Learning (cs.LG)Biomechanical PhenomenaYoung AdultDeep LearningStatistics - Machine LearningHumanslcsh:QFemale000 Allgemeineslcsh:ScienceGait000 Generalities
researchProduct

Extending the Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability

2020

Despite significant effort, building models that are both interpretable and accurate is an unresolved challenge for many pattern recognition problems. In general, rule-based and linear models lack accuracy, while deep learning interpretability is based on rough approximations of the underlying inference. Using a linear combination of conjunctive clauses in propositional logic, Tsetlin Machines (TMs) have shown competitive performance on diverse benchmarks. However, to do so, many clauses are needed, which impacts interpretability. Here, we address the accuracy-interpretability challenge in machine learning by equipping the TM clauses with integer weights. The resulting Integer Weighted TM (…

FOS: Computer and information sciencesBoosting (machine learning)Theoretical computer scienceinteger-weighted Tsetlin machineGeneral Computer ScienceComputer scienceComputer Science - Artificial Intelligence0206 medical engineeringNatural language understandingInference02 engineering and technologycomputer.software_genre0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTsetlin machineVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550InterpretabilityArtificial neural networkLearning automatabusiness.industryDeep learningGeneral Engineeringinterpretable machine learningrule-based learninginterpretable AIPropositional calculusSupport vector machineArtificial Intelligence (cs.AI)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESXAIPattern recognition (psychology)020201 artificial intelligence & image processinglcsh:Electrical engineering. Electronics. Nuclear engineeringArtificial intelligencebusinesslcsh:TK1-9971computer020602 bioinformaticsInteger (computer science)
researchProduct

A Deep Network Approach to Multitemporal Cloud Detection

2018

We present a deep learning model with temporal memory to detect clouds in image time series acquired by the Seviri imager mounted on the Meteosat Second Generation (MSG) satellite. The model provides pixel-level cloud maps with related confidence and propagates information in time via a recurrent neural network structure. With a single model, we are able to outline clouds along all year and during day and night with high accuracy.

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer scienceFeature extraction0211 other engineering and technologiesCloud detectionFOS: Physical sciencesCloud computing02 engineering and technologyCloud detection01 natural sciencesMachine Learning (cs.LG)Laboratory of Geo-information Science and Remote SensingLaboratorium voor Geo-informatiekunde en Remote Sensing021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingbusiness.industrySeviriDeep learningDeep learningPE&RCPhysics - Atmospheric and Oceanic PhysicsRecurrent neural networkRecurrent neural networksAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networksSatelliteArtificial intelligencebusinessNetwork approachIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct