6533b7d2fe1ef96bd125eb0b

RESEARCH PRODUCT

Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques

Abdessattar GhemouguiLeandro D. MedusMohamed BenouisMohamed SabanAlfredo Rosado-muñoz

subject

Envasos de plàsticComputer sciencehyperspectral imagingComputer applications to medicine. Medical informaticsR858-859.7Convolutional neural networkArticleDeep belief networkPhotographyRadiology Nuclear Medicine and imagingElectrical and Electronic EngineeringTR1-1050Extreme learning machineImage fusiondata fusionbusiness.industryDeep learningHyperspectral imagingdeep learningPattern recognitionAliments ConservacióQA75.5-76.95Sensor fusionComputer Graphics and Computer-Aided DesignAutoencoderfault detectionElectronic computers. Computer scienceComputer Vision and Pattern RecognitionArtificial intelligenceTecnologia dels alimentsbusinessfood packaging

description

A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contaminated or faulty seal area, only relevant bands are selected using data fusion. These techniques greatly improve the computation time while maintaining a high classification ratio, showing that the fused image contains enough information for checking a food tray sealing state (faulty or normal), avoiding feeding a large image datacube to the DL algorithms. Additionally, the proposed DL algorithms do not require any prior handcraft approach, i.e., no manual tuning of the parameters in the algorithms are required since the training process adjusts the algorithm. The experimental results, validated using an industrial dataset for food trays, along with different deep learning methods, demonstrate the effectiveness of the proposed approach. In the studied dataset, an accuracy of 88.7%, 88.3%, 89.3%, and 90.1% was achieved for Deep Belief Network (DBN), Extreme Learning Machine (ELM), Stacked Auto Encoder (SAE), and Convolutional Neural Network (CNN), respectively.

10.3390/jimaging7090186http://dx.doi.org/10.3390/jimaging7090186