0000000000001754

AUTHOR

Alfredo Rosado-muñoz

Apnea detection using cardiac rhythm and its hardware implementation

Abstract Sleep apnea is a sleep disorder characterized by pauses in breathing during sleep. Its detection is very important to avoid important disorders in the patients such as daytime fatigue and sleepiness, which might be very dangerous in certain work places. One of the methods to detect apnea is based in the cardiac rhythm, measuring some parameters which indicate the presence of respiration abnormalities. This work describes the used algorithm to detect apnea and its hardware implementation in an FPGA device for real time detection using the electrocardiogram (ECG) signal.

research product

Event-based encoding from digital magnetic compass and ultrasonic distance sensor for navigation in mobile systems

Event-based encoding reduces the amount of generated data while keeping relevant information in the measured magnitude. While this encoding is mostly associated with spiking neuromorphic systems, it can be used in a broad spectrum of tasks. The extension of event-based data representation to other sensors would provide advantages related to bandwidth reduction, lower computing requirements, increased processing speed and data processing. This work describes two event-based encoding procedures (magnitude-event and rate-event) for two sensors widely used in industry, especially for navigation in mobile systems: digital magnetic compass and ultrasonic distance sensor. Encoded data meet Address…

research product

Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques

A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contamin…

research product

Optimal implementation of neural activation functions in programmable logic using fuzzy logic

Abstract This work presents a methodology for implementing neural activation function in programmable logic using tools from fuzzy logic. This methodology will allow implementing these intrinsic non-linear functions using comparators and simple linear modellers, easily implemented in programmable logic. This work is particularized to the case of a hyperbolic tangent, the most common function in neural models, showing the excellent results yielded with the proposed approximation.

research product

Digital background calibration algorithm and its FPGA implementation for timing mismatch correction of time-interleaved ADC

Sample time error can degrade the performance of time-interleaved analog to digital converters (TIADCs). A fully digital background algorithm is presented in this paper to estimate and correct the timing mismatch errors between four interleaved channels, together with its hardware implementation. The proposed algorithm provides low computation burden and high performance. It is based on the simplified representation of the coefficients of the Lagrange interpolator. Simulation results show that it can suppress error tones in all of the Nyquist band. Results show that, for a four-channel TIADC with 10-bit resolution, the proposed algorithm improves the signal to noise and distortion ratio (SN…

research product

Movement Detection with Event-Based Cameras: Comparison with Frame-Based Cameras in Robot Object Tracking Using Powerlink Communication

Event-based cameras are not common in industrial applications despite the fact that they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network congestion and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial buses. This work develops a network node based on a Field Programmable Gate Array (FPGA), including data acquisition and trac…

research product

Novel Resistance Measurement Method: Analysis of Accuracy and Thermal Dependence with Applications in Fiber Materials

Material resistance is important since different physicochemical properties can be extracted from it. This work describes a novel resistance measurement method valid for a wide range of resistance values up to 100 GΩ at a low powered, small sized, digitally controlled and wireless communicated device. The analog and digital circuits of the design are described, analysing the main error sources affecting the accuracy. Accuracy and extended uncertainty are obtained for a pattern decade box, showing a maximum of 1 % accuracy for temperatures below 30 ∘ C in the range from 1 MΩ to 100 GΩ. Thermal analysis showed stability up to 50 ∘ C for values below 10 GΩ and systematic deviations for higher …

research product

Hardware implementation of real-time Extreme Learning Machine in FPGA: Analysis of precision, resource occupation and performance

Extreme Learning Machine (ELM) on-chip learning is implemented on FPGA.Three hardware architectures are evaluated.Parametrical analysis of accuracy, resource occupation and performance is carried out. Display Omitted Extreme Learning Machine (ELM) proposes a non-iterative training method for Single Layer Feedforward Neural Networks that provides an effective solution for classification and prediction problems. Its hardware implementation is an important step towards fast, accurate and reconfigurable embedded systems based on neural networks, allowing to extend the range of applications where neural networks can be used, especially where frequent and fast training, or even real-time training…

research product

FPGA implementation of Spiking Neural Networks supported by a Software Design Environment

Abstract This paper is focused on the creation of Spiking Neural Networks (SNN) in hardware due to their advantages for certain problem solving and their similarity to biological neural system. One of the main uses of this neural structure is pattern classification. The chosen model for the spiking neuron is the Spike Response Model (SRM). For SNN design and implementation, a software application has been developed to provide easy creation, simulation and automatic generation of the hardware model. VHDL was used for the hardware model. This paper describes the functionality of SNN and the design procedure followed to obtain a working neural system in both software and hardware. Designed VHD…

research product

Web Monitoring System and Gateway for Serial Communication PLC

Abstract An industrial process requires interacting with the rest of the plant, being able to exchange data with other devices and monitoring systems in order to optimize production, reporting information and providing control capabilities to distant users. Internet, and, especially web browsers are an excellent tool to provide information for remote users, allowing not only monitoring but also controlling the industrial process as an SCADA software or HMI system. The proposed system does not need specific proprietary software and its associated license costs. In this work, a webserver system is implemented under a Freescale microcontroller, acting as a gateway for a simple PLC with single …

research product

Versatile Direct and Transpose Matrix Multiplication with Chained Operations: An Optimized Architecture Using Circulant Matrices

With growing demands in real-time control, classification or prediction, algorithms become more complex while low power and small size devices are required. Matrix multiplication (direct or transpose) is common for such computation algorithms. In numerous algorithms, it is also required to perform matrix multiplication repeatedly, where the result of a multiplication is further multiplied again. This work describes a versatile computation procedure and architecture: one of the matrices is stored in internal memory in its circulant form, then, a sequence of direct or transpose multiplications can be performed without timing penalty. The architecture proposes a RAM-ALU block for each matrix c…

research product

Food tray sealing fault detection using hyperspectral imaging and PCANet

Abstract Food trays are very common in shops and supermarkets. Fresh food packaged in trays must be correctly sealed to protect the internal atmosphere and avoid contamination or deterioration. Due to the speed of production, it is not possible to have human quality inspection. Thus, automatic fault detection is a must to reach high production volume. This work describes a deep neural network based on Principal Component Analysis Network (PCANet) for food tray sealing fault detection. The input data come from hyperspectral cameras, showing more characteristics than regular industrial cameras or the human eye as they capture the spectral properties for each pixel. The proposed classification…

research product

Ventricular Fibrillation and Tachycardia Detection Using Features Derived from Topological Data Analysis

A rapid and accurate detection of ventricular arrhythmias is essential to take appropriate therapeutic actions when cardiac arrhythmias occur. Furthermore, the accurate discrimination between arrhythmias is also important, provided that the required shocking therapy would not be the same. In this work, the main novelty is the use of the mathematical method known as Topological Data Analysis (TDA) to generate new types of features which can contribute to the improvement of the detection and classification performance of cardiac arrhythmias such as Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT). The electrocardiographic (ECG) signals used for this evaluation were obtained from…

research product

Visual data mining with self-organising maps for ventricular fibrillation analysis

Detection of ventricular fibrillation (VF) at an early stage is being deeply studied in order to lower the risk of sudden death and allows the specialist to have greater reaction time to give the patient a good recovering therapy. Some works are focusing on detecting VF based on numerical analysis of time-frequency distributions, but in general the methods used do not provide insight into the problem. However, this study proposes a new methodology in order to obtain information about this problem. This work uses a supervised self-organising map (SOM) to obtain visually information among four important groups of patients: VF (ventricular fibrillation), VT (ventricular tachycardia), HP (healt…

research product

Analysis of the Modifications in the Spectral and Morphologic Regularity during Ventricular Fibrillation Produced by Physical Exercise and the Use of Glibenclamide

Chronic physical exercise modifies cardiac activity improving response to malignant arrhythmia and, specifically, ventricular fibrillation (VF). Drug administration as glibenclamide, responsible for K + ATP channel blocking, is also generating a positive response against fibrillation.

research product

Dual-model approach for safety-critical embedded systems

Abstract The paper presents the design of digital controllers based on two models: the Petri net model, and the UML state machine. These two approaches differ in many aspects of design flow, such as conceptual modelling, and analysis and synthesis. Each of these approaches can be used individually to design an efficient logic controller, and such solutions are well-known, but their interoperability can contribute to a much better understanding of logic controller design and validation. This is especially important in the case of safety- or life-critical embedded systems, and apart from this, a dual-model controller design can make up redundant system increasing its reliability.

research product

2D ECG Image Based Biometric Identification Using Stacked Autoencoders

The handcrafted features extraction methods have achieved remarkable results in ECG based biometric identification. However, they are sensitive to many factors: (1) intra and inter-individual variability, (2) heart rate variability, (3) powerline interference, baseline wander and muscle artifacts. To deal with these issues, deep learning approaches have been proposed to extract automatically the important features almost from original data without any preprocessing step (i.e., The original ECG signal mostly contains noise). Unlike conventional ECG based biometric approaches, which based either on fiducial and non-fiducial methods, the proposed approach can be implemented on end to end syste…

research product

ECG Analysis for Ventricular Fibrillation Detection Using a Boltzmann Network

Arrhythmias consist on electrical alterations in the heart beat control. They can be identified by means of surface ECG leads. The main goal of this work is to provide a signal classification based on ECG signal waveform in the time-frequency domain especially targeted to Ventricular Fibrillation detection. The use of a classifier based on a Boltzmann network is proposed. However, a previous signal preprocessing is also required so that the Boltzmann network is fed with the appropriate data. In this case, an R-wave detector is used; after that, the Pseudo Wigner-Ville time-frequency distribution is obtained. This distribution is used to train and test the network, which handles it as an ima…

research product

A Novel Systolic Parallel Hardware Architecture for the FPGA Acceleration of Feedforward Neural Networks

New chips for machine learning applications appear, they are tuned for a specific topology, being efficient by using highly parallel designs at the cost of high power or large complex devices. However, the computational demands of deep neural networks require flexible and efficient hardware architectures able to fit different applications, neural network types, number of inputs, outputs, layers, and units in each layer, making the migration from software to hardware easy. This paper describes novel hardware implementing any feedforward neural network (FFNN): multilayer perceptron, autoencoder, and logistic regression. The architecture admits an arbitrary input and output number, units in la…

research product

LABCENTER. A remote laboratory system platform

Abstract A web system server especially suited for remote laboratories has been developed. Typical e-learning systems do not offer the possibility to perform a remote laboratory where real experiments can be done online, accessing real hardware located at the University facilities. Allowing students to connect to hardware systems remotely provides them with additional knowledge about real devices; very often, real laboratory devices are time or space restricted. The proposed LABCENTER platform is a general frame designed for remote laboratories connection. The platform is designed to allow an authorized student to connect to hardware systems. As direct hardware systems allow only a single u…

research product

Moving Learning Machine Towards Fast Real-Time Applications: A High-Speed FPGA-based Implementation of the OS-ELM Training Algorithm

Currently, there are some emerging online learning applications handling data streams in real-time. The On-line Sequential Extreme Learning Machine (OS-ELM) has been successfully used in real-time condition prediction applications because of its good generalization performance at an extreme learning speed, but the number of trainings by a second (training frequency) achieved in these continuous learning applications has to be further reduced. This paper proposes a performance-optimized implementation of the OS-ELM training algorithm when it is applied to real-time applications. In this case, the natural way of feeding the training of the neural network is one-by-one, i.e., training the neur…

research product

Hardware-accelerated spike train generation for neuromorphic image and video processing

Recent studies concerning Spiking Neural Networks show that they are a powerful tool for multiple applications as pattern recognition, image tracking, and detection tasks. The basic functional properties of SNN reside in the use of spike information encoding as the neurons are specifically designed and trained using spike trains. We present a novel and efficient frequency encoding algorithm with Gabor-like receptive fields using probabilistic methods and targeted to FPGA for online pro-cessing. The proposed encoding is versatile, modular and, when applied to images, it is able to perform simple image transforms as edge detection, spot detection or removal, and Gabor-like filtering without a…

research product

Frequency spike encoding using Gabor-like receptive fields

Abstract Spiking Neural Networks (SNN) are a popular field of study. For a proper development of SNN algorithms and applications, special encoding methods are required. Signal encoding is the first step since signals need to be converted into spike trains as the primary input to an SNN. We present an efficient frequency encoding system using receptive fields. The proposed encoding is versatile and it can provide simple image transforms like edge detection, spot detection or removal, or Gabor-like filtering. The proposed encoding can be used in many application areas as image processing and signal processing for detection and classification.

research product

Support Tool for the Combined Software/Hardware Design of On-Chip ELM Training for SLFF Neural Networks

Typically, hardware implemented neural networks are trained before implementation. Extreme learning machine (ELM) is a noniterative training method for single-layer feed-forward (SLFF) neural networks well suited for hardware implementation. It provides fixed-time learning and simplifies retraining of a neural network once implemented, which is very important in applications demanding on-chip training. This study proposes the data flow of a software support tool in the design process of a hardware implementation of on-chip ELM learning for SLFF neural networks. The software tool allows the user to obtain the optimal definition of functional and hardware parameters for any application, and e…

research product

Hyperspectral image classification using CNN: Application to industrial food packaging

Abstract During food tray packaging, some contamination may exist due to the presence of undesired objects. It is essential to detect anomalies during the packaging process in order to discard the faulty tray and avoid human consumption. This study demonstrates the on-line classification feasibility when using hyperspectral imaging systems for real-time food packaging control by using Convolutional Neural Networks (CNN) as a classifier in heat-sealed food trays. A hyperspectral camera is used to capture individual food tray information and fed to a CNN classifier to detect faulty food trays with object contamination. The proposed system is able to detect up to eleven different contamination…

research product

A novel pilot study of automatic identification of EMF radiation effect on brain using computer vision and machine learning

Abstract Electromagnetic field (EMF) radiations from mobile phones and cell tower affect brain of humans and other organisms in many ways. Exposure to EMF could lead to neurological changes causing morphological or chemical changes in the brain and other internal organs. Cellular level analysis to measure and identify the effect of mobile radiations is an expensive and long process as it requires preparing the cell suspension for the analysis. This paper presents a novel pilot study to identify changes in brain morphology under EMF exposure considering drosophila melanogaster as a specimen. The brain is automatically segmented, obtaining microscopic images from which discriminatory geometri…

research product

Design environment for hardware generation of SLFF neural network topologies with ELM training capability

Extreme Learning Machine (ELM) is a noniterative training method suited for Single Layer Feed Forward Neural Networks (SLFF-NN). Typically, a hardware neural network is trained before implementation in order to avoid additional on-chip occupation, delay and performance degradation. However, ELM provides fixed-time learning capability and simplifies the process of re-training a neural network once implemented in hardware. This is an important issue in many applications where input data are continuously changing and a new training process must be launched very often, providing self-adaptation. This work describes a general SLFF-NN design environment to assist in the definition of neural netwo…

research product

An Scalable matrix computing unit architecture for FPGA and SCUMO user design interface

High dimensional matrix algebra is essential in numerous signal processing and machine learning algorithms. This work describes a scalable square matrix-computing unit designed on the basis of circulant matrices. It optimizes data flow for the computation of any sequence of matrix operations removing the need for data movement for intermediate results, together with the individual matrix operations’ performance in direct or transposed form (the transpose matrix operation only requires a data addressing modification). The allowed matrix operations are: matrix-by-matrix addition, subtraction, dot product and multiplication, matrix-by-vector multiplication, and matrix by scalar multiplication.…

research product

FPGA Implementation of an Adaptive Filter Robust to Impulsive Noise: Two Approaches

Adaptive filters are used in a wide range of applications such as echo cancellation, noise cancellation, system identification, and prediction. Its hardware implementation becomes essential in many cases where real-time execution is needed. However, impulsive noise affects the proper operation of the filter and the adaptation process. This noise is one of the most damaging types of signal distortion, not always considered when implementing algorithms, particularly in specific hardware platforms. Field-programmable gate arrays (FPGAs) are used widely for real-time applications where timing requirements are strict. Nowadays, two main design processes can be followed for embedded system design…

research product

Simplified spiking neural network architecture and STDP learning algorithm applied to image classification

Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time dependent plasticity (STDP) lear…

research product

High resistance measurement circuit for fiber materials: Application to moisture content estimation

Abstract Measuring very high resistance values is a difficult task since low voltage or currents are present and thus, noise and amplification must be carefully done, especially when low resistance values are required to be measured using the same circuit, too. This work proposes a novel and accurate measurement instrument for a wide range of resistance values oriented to portable applications, i.e. low power and low supply voltage (5 V) for battery operated equipment, with a small circuit design including analog sensing, digital interface (data reading and control) using a microcontroller and external communication. The proposed circuit includes an inverter attenuator with layout and confi…

research product

Hardware implementation of a robust adaptive filter: Two approaches based in High-Level Synthesis design tools

Abstract Adaptive filters are used in a wide range of applications. Impulsive noise affects the proper operation of the filter and the adaptation process. This noise is one of the most damaging types of signal distortion, not always considered when implementing algorithms. Field Programmable Gate Array (FPGA) are widely used for applications where timing requirements are strict. Nowadays, two main design processes can be followed, namely, Hardware Description Language (HDL) and a High Level Synthesis (HLS) design tool for embedded system design. This paper describes the FPGA implementation of an adaptive filter robust to impulsive noise using two approaches based in HLS and the implementati…

research product

Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection

Early detection of ventricular fibrillation (VF) is crucial for the success of the defibrillation therapy in automatic devices. A high number of detectors have been proposed based on temporal, spectral, and time-frequency parameters extracted from the surface electrocardiogram (ECG), showing always a limited performance. The combination ECG parameters on different domain (time, frequency, and time-frequency) using machine learning algorithms has been used to improve detection efficiency. However, the potential utilization of a wide number of parameters benefiting machine learning schemes has raised the need of efficient feature selection (FS) procedures. In this study, we propose a novel FS…

research product

Less Data Same Information for Event-Based Sensors: A Bioinspired Filtering and Data Reduction Algorithm

Sensors provide data which need to be processed after acquisition to remove noise and extract relevant information. When the sensor is a network node and acquired data are to be transmitted to other nodes (e.g., through Ethernet), the amount of generated data from multiple nodes can overload the communication channel. The reduction of generated data implies the possibility of lower hardware requirements and less power consumption for the hardware devices. This work proposes a filtering algorithm (LDSI&mdash

research product

AMCAS: Advanced Methods for the Co-Design of Complex Adaptive Systems

Abstract This work proposes a new approximation to design and program Complex Adaptive Systems (CAS), these systems comprise neural network, intelligent agents, genetic algorithms, support vector machines and artificial intelligence systems in general. Due to the complexity of such systems, it is necessary to build a design environment able to ease the design work, allowing reusability and easy migration to hardware and/or software. Ptolemy II is used as the base system to simulate and evaluate the designs with different Models of Computation so that an optimum decision about the hardware or software implementation platform can be taken.

research product

Optimization of the KNN Supervised Classification Algorithm as a Support Tool for the Implantation of Deep Brain Stimulators in Patients with Parkinson's Disease

Deep Brain Stimulation (DBS) of the Subthalamic Nuclei (STN) is the most used surgical treatment to improve motor skills in patients with Parkinson&rsquo

research product

Detection of Ventricular Fibrillation Using the Image from Time-Frequency Representation and Combined Classifiers without Feature Extraction

Due the fact that the required therapy to treat Ventricular Fibrillation (V F) is aggressive (electric shock), the lack of a proper detection and recovering therapy could cause serious injuries to the patient or trigger a ventricular fibrillation, or even death. This work describes the development of an automatic diagnostic system for the detection of the occurrence of V F in real time by means of the time-frequency representation (T F R) image of the ECG. The main novelties are the use of the T F R image as input for a classification process, as well as the use of combined classifiers. The feature extraction stage is eliminated and, together with the use of specialized binary classifiers, …

research product

FPGA implementation of Spiking Neural Networks

Abstract Spiking Neural Networks (SNN) have optimal characteristics for hardware implementation. They can communicate among neurons using spikes, which in terms of logic resources, means a single bit, reducing the logic occupation in a device. Additionally, SNN are similar in performance compared to other neural Artificial Neural Network (ANN) architectures such as Multilayer Perceptron, and others. SNN are very similar to those found in the biological neural system, having weights and delays as adjustable parameters. This work describes the chosen models for the implemented SNN: Spike Response Model (SRM) and temporal coding is used. FPGA implementation using VHDL language is also describe…

research product

Low complexity digital background calibration algorithm for the correction of timing mismatch in time-interleaved ADCs

Abstract A low-complexity post-processing algorithm to estimate and compensate for timing skew error in a four-channel time-interleaved analog to digital converter (TIADC) is presented in this paper, together with its hardware implementation. The Lagrange interpolator is used as the reconstruction filter which alleviates online interpolator redesign by using a simplified representation of coefficients. Simulation results show that the proposed algorithm can suppress error tones for input signal frequency from 0 to 0.4 f s . The proposed structure has, at least, 41% reduction in the number of required multipliers. Implementation of the algorithm, for a four-channel 10-bit TIADC, show that, f…

research product

Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitori…

research product

Novel Wood Resistance Measurement Method Reducing the Initial Transient Instabilities Arising in DC Methods Due to Polarization Effects

A novel method for measuring the electrical resistance in wood is presented. It is based on applying an Alternating Current (AC) to two electrodes rammed into the wood. The method reduces the transient time for value stabilization. In case of Direct Current (DC) resistance measurement methods, typically used in wood measurement, an initial transient exists, invalidating the measured value during an initial transient period. This measurement method uses an electronic circuit based on a relaxation oscillator where the wood automatically sets the oscillation frequency depending on its electrical resistance. Compared to other AC methods, this circuit greatly simplifies the measurement process, …

research product