6533b858fe1ef96bd12b61b7

RESEARCH PRODUCT

Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection

Arcadi García-alberolaGustau Camps-vallsJuan Jose VinagreJosé Luis Rojo-álvarezAlfredo Rosado-muñozFelipe Alonso-atienza

subject

Computer sciencebusiness.industryDetectorGeneral EngineeringNonparametric statisticsFeature selectionPattern recognitionComputer Science ApplicationsDomain (software engineering)Support vector machineComputingMethodologies_PATTERNRECOGNITIONArtificial IntelligenceFeature (computer vision)Benchmark (computing)Artificial intelligencebusinessStatistic

description

Early detection of ventricular fibrillation (VF) is crucial for the success of the defibrillation therapy in automatic devices. A high number of detectors have been proposed based on temporal, spectral, and time-frequency parameters extracted from the surface electrocardiogram (ECG), showing always a limited performance. The combination ECG parameters on different domain (time, frequency, and time-frequency) using machine learning algorithms has been used to improve detection efficiency. However, the potential utilization of a wide number of parameters benefiting machine learning schemes has raised the need of efficient feature selection (FS) procedures. In this study, we propose a novel FS algorithm based on support vector machines (SVM) classifiers and bootstrap resampling (BR) techniques. We define a backward FS procedure that relies on evaluating changes in SVM performance when removing features from the input space. This evaluation is achieved according to a nonparametric statistic based on BR. After simulation studies, we benchmark the performance of our FS algorithm in AHA and MIT-BIH ECG databases. Our results show that the proposed FS algorithm outperforms the recursive feature elimination method in synthetic examples, and that the VF detector performance improves with the reduced feature set.

https://doi.org/10.1016/j.eswa.2011.08.051