6533b86efe1ef96bd12cbfad

RESEARCH PRODUCT

Real-Time Localization of Epileptogenic Foci EEG Signals: An FPGA-Based Implementation

Manuel Bataller-mompeánJose V. Frances-villoraJuan F. Guerrero-martinezAntonio Gutierrez MartinVicente VillanuevaAzeddine MjahadVicent Teruel-martíAlfredo Rosado-muñozKevin G. Hampel

subject

ElectrodiagnòsticRemote patient monitoringComputer science02 engineering and technologyElectroencephalographylcsh:Technologylcsh:Chemistryepileptogenic focus03 medical and health sciences0302 clinical medicineClassifier (linguistics)0202 electrical engineering electronic engineering information engineeringmedicineGeneral Materials ScienceEpilepsy surgeryLatency (engineering)Field-programmable gate arrayInstrumentationThroughput (business)lcsh:QH301-705.5FPGAFluid Flow and Transfer Processesmedicine.diagnostic_testbusiness.industrylcsh:TProcess Chemistry and Technologyreal-time implementationepileptic eeg signal classificationGeneral EngineeringProcess (computing)Pattern recognitionelectroencephalogramlcsh:QC1-999Computer Science Applicationsfpgalcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040epileptic EEG signal classificationepilepsy020201 artificial intelligence & image processingEnginyeria biomèdicaArtificial intelligenceElectroencefalografiabusinesslcsh:Engineering (General). Civil engineering (General)030217 neurology & neurosurgerylcsh:Physics

description

The epileptogenic focus is a brain area that may be surgically removed to control of epileptic seizures. Locating it is an essential and crucial step prior to the surgical treatment. However, given the difficulty of determining the localization of this brain region responsible of the initial seizure discharge, many works have proposed machine learning methods for the automatic classification of focal and non-focal electroencephalographic (EEG) signals. These works use automatic classification as an analysis tool for helping neurosurgeons to identify focal areas off-line, out of surgery, during the processing of the huge amount of information collected during several days of patient monitoring. In turn, this paper proposes an automatic classification procedure capable of assisting neurosurgeons online, during the resective epilepsy surgery, to refine the localization of the epileptogenic area to be resected, if they have doubts. This goal requires a real-time implementation with as low a computational cost as possible. For that reason, this work proposes both a feature set and a classifier model that minimizes the computational load while preserving the classification accuracy at 95.5%, a level similar to previous works. In addition, the classification procedure has been implemented on a FPGA device to determine its resource needs and throughput. Thus, it can be concluded that such a device can embed the whole classification process, from accepting raw signals to the delivery of the classification results in a cost-effective Xilinx Spartan-6 FPGA device. This real-time implementation begins providing results after a 5 s latency, and later, can deliver floating-point classification results at 3.5 Hz rate, using overlapped time-windows.

https://fundanet.iislafe.san.gva.es/publicaciones/ProdCientif/PublicacionFrw.aspx?id=12918