6533b861fe1ef96bd12c4404

RESEARCH PRODUCT

Detection of Ventricular Fibrillation Using the Image from Time-Frequency Representation and Combined Classifiers without Feature Extraction

Juan F. Guerrero-martinezJose V. Frances-villoraAlfredo Rosado-muñozMalay Kishore DuttaManuel Bataller-mompeánAzeddine Mjahad

subject

ElectrodiagnòsticECG electrocardiogram signalsComputer science0206 medical engineeringFeature extraction02 engineering and technologycombined classification algorithmslcsh:TechnologyImage (mathematics)lcsh:ChemistryTime–frequency representationimage analysisvoting majority method classifiersnon-stationary signalstime-frequency representation0202 electrical engineering electronic engineering information engineeringmedicineGeneral Materials ScienceInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesbusiness.industrybiomedical systemslcsh:TProcess Chemistry and TechnologyGeneral EngineeringPattern recognitionmedicine.disease020601 biomedical engineeringlcsh:QC1-999Computer Science ApplicationsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Ventricular fibrillationEnginyeria biomèdica020201 artificial intelligence & image processingArtificial intelligencebusinesslcsh:Engineering (General). Civil engineering (General)hierarchical classifiersImatges Processament Tècniques digitalslcsh:Physics

description

Due the fact that the required therapy to treat Ventricular Fibrillation (V F) is aggressive (electric shock), the lack of a proper detection and recovering therapy could cause serious injuries to the patient or trigger a ventricular fibrillation, or even death. This work describes the development of an automatic diagnostic system for the detection of the occurrence of V F in real time by means of the time-frequency representation (T F R) image of the ECG. The main novelties are the use of the T F R image as input for a classification process, as well as the use of combined classifiers. The feature extraction stage is eliminated and, together with the use of specialized binary classifiers, this method improves the results of the classification. To verify the validity of the method, four different classifiers in different combinations are used: Regression Logistic with L2 Regularization (L 2 R L R), adaptive neural network (A N N C), Bagging (B A G G), and K-nearest neighbor (K N N). The Hierarchical Method (HM) and Voting Majority Method (VMM) combinations are used. ECG signals used for evaluation were obtained from the standard MIT-BIH and AHA databases. When the classifiers were combined, it was observed that the combination of B A G G , K N N , and A N N C using the Hierarchical Method (HM) gave the best results, with a sensitivity of 95.58 &plusmn

10.3390/app8112057https://www.mdpi.com/2076-3417/8/11/2057