0000000000179442

AUTHOR

Leandro D. Medus

Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques

A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contamin…

research product

Movement Detection with Event-Based Cameras: Comparison with Frame-Based Cameras in Robot Object Tracking Using Powerlink Communication

Event-based cameras are not common in industrial applications despite the fact that they can add multiple advantages for applications with moving objects. In comparison with frame-based cameras, the amount of generated data is very low while keeping the main information in the scene. For an industrial environment with interconnected systems, data reduction becomes very important to avoid network congestion and provide faster response time. However, the use of new sensors as event-based cameras is not common since they do not usually provide connectivity to industrial buses. This work develops a network node based on a Field Programmable Gate Array (FPGA), including data acquisition and trac…

research product

Experimental Analysis of IoT Networks Based on LoRa/LoRaWAN under Indoor and Outdoor EnvirMedusonments: Performance and Limitations

Nowadays, Internet of Things (IoT) has multiple applications in different fields. This concept allows physical devices to connect to the internet in order to establish a strong infrastructure that facilitates many device control and monitoring tasks. Low Power Wide Area (LPWA) communication protocols become widely used for IoT networks because of their low power consumption and the broad range communication. LPWA enables devices to transmit small amounts of data in a long distance. Among LPWA protocols, LoRa technology gained a lot of interest recently from the research community and many companies. LoRa is a long range and low power wireless communication technology regulated by the LoRaWA…

research product

Sensor Node Network for Remote Moisture Measurement in Timber Based on Bluetooth Low Energy and Web-Based Monitoring System

This paper proposes an IoT system based on wireless BLE connectivity to monitor the moisture content of wood, using a compact and low-cost moisture device that relies on a resistance measurement method valid for an ultra-wide range of resistance values. This device is digitally controlled with a BLE-incorporated micro-controller characterized by its small size and low power consumption, providing long-life battery. The proposed system consists of two main parts: first, the BLE moisture device including the moisture content measurement and wireless capability (BLE)

research product

Food tray sealing fault detection using hyperspectral imaging and PCANet

Abstract Food trays are very common in shops and supermarkets. Fresh food packaged in trays must be correctly sealed to protect the internal atmosphere and avoid contamination or deterioration. Due to the speed of production, it is not possible to have human quality inspection. Thus, automatic fault detection is a must to reach high production volume. This work describes a deep neural network based on Principal Component Analysis Network (PCANet) for food tray sealing fault detection. The input data come from hyperspectral cameras, showing more characteristics than regular industrial cameras or the human eye as they capture the spectral properties for each pixel. The proposed classification…

research product

A Novel Systolic Parallel Hardware Architecture for the FPGA Acceleration of Feedforward Neural Networks

New chips for machine learning applications appear, they are tuned for a specific topology, being efficient by using highly parallel designs at the cost of high power or large complex devices. However, the computational demands of deep neural networks require flexible and efficient hardware architectures able to fit different applications, neural network types, number of inputs, outputs, layers, and units in each layer, making the migration from software to hardware easy. This paper describes novel hardware implementing any feedforward neural network (FFNN): multilayer perceptron, autoencoder, and logistic regression. The architecture admits an arbitrary input and output number, units in la…

research product

Hyperspectral image classification using CNN: Application to industrial food packaging

Abstract During food tray packaging, some contamination may exist due to the presence of undesired objects. It is essential to detect anomalies during the packaging process in order to discard the faulty tray and avoid human consumption. This study demonstrates the on-line classification feasibility when using hyperspectral imaging systems for real-time food packaging control by using Convolutional Neural Networks (CNN) as a classifier in heat-sealed food trays. A hyperspectral camera is used to capture individual food tray information and fed to a CNN classifier to detect faulty food trays with object contamination. The proposed system is able to detect up to eleven different contamination…

research product

Less Data Same Information for Event-Based Sensors: A Bioinspired Filtering and Data Reduction Algorithm

Sensors provide data which need to be processed after acquisition to remove noise and extract relevant information. When the sensor is a network node and acquired data are to be transmitted to other nodes (e.g., through Ethernet), the amount of generated data from multiple nodes can overload the communication channel. The reduction of generated data implies the possibility of lower hardware requirements and less power consumption for the hardware devices. This work proposes a filtering algorithm (LDSI&mdash

research product