Search results for "deep sequencing"
showing 10 items of 28 documents
CoverageAnalyzer (CAn): A Tool for Inspection of Modification Signatures in RNA Sequencing Profiles
2016
Combination of reverse transcription (RT) and deep sequencing has emerged as a powerful instrument for the detection of RNA modifications, a field that has seen a recent surge in activity because of its importance in gene regulation. Recent studies yielded high-resolution RT signatures of modified ribonucleotides relying on both sequence-dependent mismatch patterns and reverse transcription arrests. Common alignment viewers lack specialized functionality, such as filtering, tailored visualization, image export and differential analysis. Consequently, the community will profit from a platform seamlessly connecting detailed visual inspection of RT signatures and automated screening for modifi…
Hepatitis C virus intrinsic molecular determinants may contribute to the development of cholestatic hepatitis after liver transplantation
2018
Cholestatic hepatitis C (CHC) is a severe form of hepatitis C virus (HCV) infection recurrence that leads to high graft loss rates early after liver transplantation (LT). To investigate the pathogenic mechanisms of CHC, we analysed HCV quasispecies in CHC patients compared to a control group (mild hepatitis C recurrence) by deep pyrosequencing. At the time of LT, NS5B quasispecies complexity was similar between the two groups but, after LT, it decreased more sharply in CHC patients than in the control group. Interestingly, the major variant before LT propagated efficiently and remained as the dominant sequence after LT in 62 % of CHC patients versus 11 % of controls (P=0.031). Sequence anal…
In vivophage display: identification of organ-specific peptides using deep sequencing and differential profiling across tissues
2020
ABSTRACTIn vivophage display is widely used for identification of organ- or disease-specific homing peptides. However, the currentin vivophage biopanning approaches fail to assess biodistribution of specific peptide phages across tissues during the screen, thus necessitating laborious and time-consuming post-screening validation studies on individual peptide phages. Here, we adopted bioinformatics tools used for RNA sequencing for analysis of high throughput sequencing (HTS) data to estimate the representation of individual peptides during biopanningin vivo. The data fromin vivophage screen were analyzed using differential binding – relative representation of each peptide in the target orga…
Analysis of pseudouridines and other RNA modifications using hydraPsiSeq protocol
2021
Detection of RNA modified nucleotides using deep sequencing can be performed by several approaches, including antibody-driven enrichment and natural or chemically induced RT signatures. However, only very few RNA modified nucleotides generate natural RT signatures and antibody-driven enrichment heavily depends on the quality of antibodies used and may be highly biased. Thus, the use of chemically-induced RT signatures is now considered as the most trusted experimental approach. In addition, the use of chemical reagents allows inclusion of simple "mock-treated" controls, to exclude spontaneous RT arrests, SNPs and other misincorporation-prone sites. Hydrazine is a well-known RNA-specific rea…
Computational Methods for Gene Expression Profiling Using Next-Generation Sequencing (RNA-Seq)
2014
Collective Viral Spread Mediated by Virion Aggregates Promotes the Evolution of Defective Interfering Particles
2020
Recent insights have revealed that viruses use a highly diverse set of strategies to release multiple viral genomes into the same target cells, allowing the emergence of beneficial, but also detrimental, interactions among viruses inside infected cells. This has prompted interest among microbial ecologists and evolutionary biologists in studying how collective dispersal impacts the outcome of viral infections. Here, we have used vesicular stomatitis virus as a model system to study the evolutionary implications of collective dissemination mediated by viral aggregates, since this virus can spontaneously aggregate in the presence of saliva. We find that saliva-driven aggregation has a dual ef…
Molecular Basis of Mismatch Repair Protein Deficiency in Tumors from Lynch Suspected Cases with Negative Germline Test Results
2020
Some 10&ndash
Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies
2019
New analytics of post-transcriptional RNA modifications have paved the way for a tremendous upswing of the biological and biomedical research in this field. This especially applies to methods that included RNA-Seq techniques, and which typically result in what is termed global scale modification mapping. In this process, positions inside a cell`s transcriptome are receiving a status of potential modification sites (so called modification calling), typically based on a score of some kind that issues from the particular method applied. The resulting data are thought to represent information that goes beyond what is contained in typical transcriptome data, and hence the field has taken to use …
AP5Z1/SPG4 8 frequency in autosomal recessive and sporadic spastic paraplegia
2014
Hereditary spastic paraplegias (HSP) constitute a rare and highly heterogeneous group of neurodegenerative disorders, defined clinically by progressive lower limb spasticity and pyramidal weakness. Autosomal recessive HSP as well as sporadic cases present a significant diagnostic challenge. Mutations in AP5Z1, a gene playing a role in intracellular membrane trafficking, have been recently reported to be associated with spastic paraplegia type 48 (SPG48). Our objective was to determine the relative frequency and clinical relevance of AP5Z1 mutations in a large cohort of 127 HSP patients. We applied a targeted next-generation sequencing approach to analyze all coding exons of the AP5Z1 gene. …
In vivo phage display: identification of organ-specific peptides using deep sequencing and differential profiling across tissues.
2021
Abstract In vivo phage display is widely used for identification of organ- or disease-specific homing peptides. However, the current in vivo phage biopanning approaches fail to assess biodistribution of specific peptide phages across tissues during the screen, thus necessitating laborious and time-consuming post-screening validation studies on individual peptide phages. Here, we adopted bioinformatics tools used for RNA sequencing for analysis of high-throughput sequencing (HTS) data to estimate the representation of individual peptides during biopanning in vivo. The data from in vivo phage screen were analyzed using differential binding—relative representation of each peptide in the target…