Search results for "dehydrogenases"

showing 10 items of 55 documents

Heavy enzymes and the rational redesign of protein catalysts

2019

Abstract An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled “heavy” dihydrofolate reductases and their natural‐abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present…

010402 general chemistryProtein Engineering01 natural sciencesBiochemistryCatalysisEnzyme catalysisisotope effectsCatalytic DomainDihydrofolate reductaseMolecular BiologyAlcohol dehydrogenasechemistry.chemical_classificationalcohol dehydrogenasesCarbon Isotopesdihydrofolate reductasesbiologyBacteriaNitrogen Isotopes010405 organic chemistryConceptOrganic ChemistryAlcohol DehydrogenaseActive siteSubstrate (chemistry)Protein engineeringDeuteriumCombinatorial chemistrymolecular dynamics0104 chemical sciencesKineticsTetrahydrofolate Dehydrogenaseenzyme engineeringEnzymechemistrybiology.proteinBiocatalysisMolecular MedicineConcepts
researchProduct

Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde…

2017

The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp)…

0106 biological sciences0301 basic medicineMutantArabidopsisDehydrogenasePlant ScienceGlyceric Acids01 natural sciences03 medical and health sciencesGeneticsGlycolysisPlastidsPlastidGlyceraldehyde 3-phosphate dehydrogenasebiologyArabidopsis ProteinsGlyceraldehyde-3-Phosphate DehydrogenasesCell BiologyMetabolismCytosol030104 developmental biologyBiochemistryTriose phosphate translocatorbiology.proteinGlycolysis010606 plant biology & botanyThe Plant journal : for cell and molecular biology
researchProduct

The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate d…

2016

The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate de…

0106 biological sciences0301 basic medicineNitrogenArabidopsisDehydrogenasePlant Science01 natural sciencesPlant RootsSerine03 medical and health scienceschemistry.chemical_compoundBiosynthesisSerineGlycolysisPlastidsPlastidPhosphorylationPhotosynthesisGlyceraldehyde 3-phosphate dehydrogenasebiologyGlyceraldehyde-3-Phosphate DehydrogenasesCompartmentalization (fire protection)CarbonArticle AddendumCytosol030104 developmental biologychemistryBiochemistryMutationbiology.proteinGlycolysis010606 plant biology & botany
researchProduct

Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity

2010

Several studies focusing on elucidating the mechanism of NO (nitric oxide) signalling in plant cells have highlighted that its biological effects are partly mediated by protein kinases. The identity of these kinases and details of how NO modulates their activities, however, remain poorly investigated. In the present study, we have attempted to clarify the mechanisms underlying NO action in the regulation of NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SNF1 (sucrose non-fermenting 1)-related protein kinase 2 family. We found that in tobacco BY-2 (bright-yellow 2) cells exposed to salt stress, NtOSAK is rapidly activated, partly through a NO-dependent pr…

0106 biological sciencesOsmosisSalinityNicotiana tabacumMolecular Sequence DataNitric Oxide01 natural sciencesBiochemistry03 medical and health sciencesEnzyme activatorStress PhysiologicalTobaccoASK1[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceProtein kinase AMolecular BiologyGlyceraldehyde 3-phosphate dehydrogenaseCells Cultured030304 developmental biologyPlant Proteins0303 health sciencesbiologyKinaseGlyceraldehyde-3-Phosphate DehydrogenasesLife SciencesCell BiologyS-Nitrosylationbiology.organism_classification3. Good healthBiochemistrybiology.proteinPhosphorylationProtein Kinases010606 plant biology & botany
researchProduct

Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: inte…

2010

Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expressio…

0106 biological sciencesPhysiologyArabidopsisPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundAmino acid homeostasisPlant Growth RegulatorsGene Expression Regulation PlantArabidopsisArabidopsis thalianaPlastidsAbscisic acidGlyceraldehyde 3-phosphate dehydrogenase030304 developmental biologyglyceraldehyde-3-phosphate dehydrogenase0303 health sciencesbiologyArabidopsis Proteinsorganic chemicalsfungiGlyceraldehyde-3-Phosphate Dehydrogenasesfood and beveragessugar signallingglycolysisbiology.organism_classificationResearch Papers3. Good healthGAPCpchemistryBiochemistryABAABA signal transductionbiology.proteinCarbohydrate MetabolismSignal transductionSugar signal transduction010606 plant biology & botanyAbscisic AcidSignal Transduction
researchProduct

Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort☆

2020

Background & Aims: Genetic factors associated with nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most genome-wide association studies (GWASs) have adopted radiologically assessed hepatic triglyceride content as the reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a GWAS encompassing the full spectrum of histologically characterised NAFLD. Methods: The GWAS involved 1,483 European NAFLD cases and 17,781 genetically matched controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance. Results: Case-control analysis identified…

0301 basic medicineMaleCirrhosis17-Hydroxysteroid DehydrogenasesFibrosiVARIANTLOCIPROGRESSIONGenome-wide association studyDiseaseBioinformaticsDISEASECohort Studies0302 clinical medicineNon-alcoholic Fatty Liver DiseaseRisk FactorsGWASINCREASED RISKCONFERS SUSCEPTIBILITYeducation.field_of_studyFatty liverNASHMiddle Aged3. Good healthNAFLD; NASH; Fibrosis; GWAS; PNPLA3; TM6SF2; GCKR; HSD17B13; SNPPhenotypeLiver030211 gastroenterology & hepatologyFemaleLife Sciences & BiomedicineGCKRAdultPopulationSNP610 Medicine & healthGastroenterology and HepatologyPolymorphism Single NucleotideTM6SF2HSD17B1303 medical and health sciencesNAFLDmedicineGastroenterologiHumansGenetic Predisposition to DiseaseeducationPNPLA3Adaptor Proteins Signal TransducingScience & TechnologyGastroenterology & HepatologyHepatologybusiness.industrynutritional and metabolic diseasesMembrane ProteinsLipasemedicine.diseaseFibrosisPOLYMORPHISMLEPTIN RECEPTOR GENE030104 developmental biology3121 General medicine internal medicine and other clinical medicineCase-Control StudiesHuman medicineSteatosisSteatohepatitisbusinessTM6SF2Genome-Wide Association StudyJournal of Hepatology
researchProduct

Genetic Variation in HSD17B13 Reduces the Risk of Developing Cirrhosis and Hepatocellular Carcinoma in Alcohol Misusers.

2020

Background and aims Carriage of rs738409:G in patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with carriage of PNPLA3 rs738409:G. This study explores the risk associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. Approach and results Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including 1,03…

0301 basic medicineMaleCirrhosis17-Hydroxysteroid DehydrogenasesVARIANTPROGRESSIONGastroenterologyCohort StudiesLiver disease0302 clinical medicineSNP RS738409G ALLELEDEPENDENCELiver Cirrhosis Alcoholic600 Technology610 Medicine & healthAged 80 and overeducation.field_of_studyFramingham Risk ScoreLiver NeoplasmsASSOCIATIONlipotoxicityMiddle AgedAlcoholism1101 Medical Biochemistry and Metabolomics1107 ImmunologyHepatocellular carcinomaadiponutrin030211 gastroenterology & hepatologyFemalecandidate genesLife Sciences & Biomedicinemedicine.medical_specialtyCarcinoma HepatocellularPopulation610 Medicine & healthLower riskRisk Assessment03 medical and health sciencesLIVER-DISEASEInternal medicinemedicinegenetic risk associationHumansAdiponutrineducationPNPLA3METAANALYSISAgedDISEASE-ASSOCIATED MORTALITYScience & TechnologyHepatologyGastroenterology & Hepatologybusiness.industryfibrosisGenetic Variation1103 Clinical SciencesOdds ratiomedicine.disease030104 developmental biologyhost geneticsbusinessgenetic susceptibility
researchProduct

Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction.

2019

Summary Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. C…

0301 basic medicineanalogs & derivatives [Dinoprostone]Malemetabolism [Diabetes Mellitus Type 2]Adipose tissueLymphocyte Activation15-ketoprostaglandin E2T-Lymphocytes RegulatoryJurkat cellsJurkat CellsMice0302 clinical medicineimmunology [Lymphocyte Activation]genetics [Insulin Resistance]STAT5 Transcription FactorHomeostasisImmunology and AllergyTissue homeostasisgenetics [Hydroxyprostaglandin Dehydrogenases]Mice Knockoutcytology [Intra-Abdominal Fat]enzymology [T-Lymphocytes Regulatory]FOXP3hemic and immune systems3T3 CellsCell biologyInfectious Diseases030220 oncology & carcinogenesisHydroxyprostaglandin Dehydrogenasesmedicine.symptomimmunology [T-Lymphocytes Regulatory]metabolism [STAT5 Transcription Factor]Immunologymetabolism [Dinoprostone]chemical and pharmacologic phenomenaInflammationIntra-Abdominal FatBiologyDinoprostoneCell Line03 medical and health sciencesmetabolism [Hydroxyprostaglandin Dehydrogenases]immunology [Homeostasis]medicineAnimalsHumansddc:610immunology [Intra-Abdominal Fat]HEK 293 cells030104 developmental biologyHEK293 CellsDiabetes Mellitus Type 2Cell cultureInsulin ResistanceHomeostasis
researchProduct

Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives

2018

A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-b-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced 62% HSD1 inhibition at 5 mM and, furthermore, three of them produced 68% inhibition at 1 mM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-b-hydroxysteroid dehydrogenase 2 – a requirement for lowe…

0301 basic medicinearomatase17-Hydroxysteroid Dehydrogenasesmedicine.drug_classStereochemistry3-imidazolecoumarinaromataasiDehydrogenaseta3111LigandsStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundstructure-activity relationship (SAR)0302 clinical medicineCoumarinsIn vivo17-β-hydroxysteroid dehydrogenase 1 (HSD1)Drug DiscoverymedicineHumansMoietyEnzyme InhibitorsAromatasePharmacologyAromatase inhibitorDose-Response Relationship DrugEstradiolMolecular StructurebiologyChemistrylcsh:RM1-950CYP1A2ta1182General MedicineCoumarin3. Good healthMolecular Docking Simulationlcsh:Therapeutics. Pharmacology030104 developmental biologyDocking (molecular)030220 oncology & carcinogenesisbiology.proteinComputer-Aided Design3-Phenylcoumarinhormones hormone substitutes and hormone antagonistsResearch PaperJournal of Enzyme Inhibition and Medicinal Chemistry
researchProduct

Partial purification and characterization of an NAD-dependent 3 beta-hydroxysteroid dehydrogenase from Clostridium innocuum

1989

In nine strains of Clostridium innocuum, 3 beta-hydroxysteroid-dehydrogenating activities were detected. 3 beta, 7 alpha, 12 alpha-Trihydroxy- and 3 beta-hydroxy-12-keto-5 beta-cholanoic acids were identified as reduction products of the respective 3-keto bile acids by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry. One strain was shown to contain a NAD-dependent 3 beta-hydroxysteroid dehydrogenase. Enzyme production was constitutive in the absence of added bile acids. The specific enzyme activity was significantly reduced by growth medium supplementation with 3-keto bile acids, with trisubstituted acids being more effective than disubstituted ones. A pH optimum o…

3-Hydroxysteroid DehydrogenasesIon chromatographyDehydrogenaseApplied Microbiology and BiotechnologySubstrate SpecificityBile Acids and SaltsFeceschemistry.chemical_compoundHumansNucleotideClostridiumchemistry.chemical_classificationGrowth mediumChromatographyClostridium innocuumEcologybiologyHydrogen-Ion Concentrationbiology.organism_classificationMolecular WeightKineticsEnzymechemistryBiochemistryNAD+ kinaseBacteriaResearch ArticleFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct