Search results for "deletion"
showing 10 items of 383 documents
Successive Losses of Central Immune Genes Characterize the Gadiformes' Alternate Immunity.
2016
Great genetic variability among teleost immunomes, with gene losses and expansions of central adaptive and innate components, has been discovered through genome sequencing over the last few years. Here, we demonstrate that the innate Myxovirus resistance gene (Mx) is lost from the ancestor of Gadiformes and the closely related Stylephorus chordatus, thus predating the loss of Major Histocompatibility Complex class II (MHCII) in Gadiformes. Although the functional implication of Mx loss is still unknown, we demonstrate that this loss is one of several ancient events appearing in successive order throughout the evolution of teleost immunity. In particular, we find that the loss of Toll-like r…
Evolving by deleting: patterns of molecular evolution of Apple stem pitting virus isolates from Poland
2019
In this study, 267 coat protein gene (CP) sequences from 48 Polish isolates of Apple stem pitting virus (ASPV) were determined. The genetic structure of the virus population was analysed and possible mechanisms of molecular evolution explored. We found evidence of recombination within the ASPV population and the presence of 17 ASPV molecular variants that differ in the length, number and arrangement of deletions in the CP. Population genetic analyses showed significant variation among isolates from pear and apple trees, between isolates from the same host species and, more interestingly, within isolates, supporting the existence of significant levels of variability within individual hosts, …
Deletion of GLX3 in Candida albicans affects temperature tolerance, biofilm formation and virulence.
2018
Candida albicans is a predominant cause of fungal infections in mucosal tissues as well as life-threatening bloodstream infections in immunocompromised patients. Within the human body, C. albicans is mostly embedded in biofilms, which provides increased resistance to antifungal drugs. The glyoxalase Glx3 is an abundant proteomic component of the biofilm extracellular matrix. Here, we document phenotypic studies of a glx3Δ null mutant concerning its role in biofilm formation, filamentation, antifungal drug resistance, cell wall integrity and virulence. First, consistent with its function as glyoxalase, the glx3 null mutant showed impaired growth on media containing glycerol as the carbon sou…
Role of AxyZ Transcriptional Regulator in Overproduction of AxyXY-OprZ Multidrug Efflux System in Achromobacter Species Mutants Selected by Tobramycin
2017
ABSTRACT AxyXY-OprZ is an RND-type efflux system that confers innate aminoglycoside resistance to Achromobacter spp. We investigated here a putative TetR family transcriptional regulator encoded by the axyZ gene located upstream of axyXY-oprZ . An in-frame axyZ gene deletion assay led to increased MICs of antibiotic substrates of the efflux system, including aminoglycosides, cefepime, fluoroquinolones, tetracyclines, and erythromycin, indicating that the product of axyZ negatively regulates expression of axyXY-oprZ . Moreover, we identified an amino acid substitution at position 29 of AxyZ (V29G) in a clinical Achromobacter strain that occurred during the course of chronic respiratory tract…
Impact of somatic mutations in myelodysplastic patients with isolated partial or total loss of chromosome 7
2020
Monosomy 7 [-7] and/or partial loss of chromosome 7 [del(7q)] are associated with poor and intermediate prognosis, respectively, in myelodysplastic syndromes (MDS), but somatic mutations may also play a key complementary role. We analyzed the impact on the outcomes of deep targeted mutational screening in 280 MDS patients with -7/del(7q) as isolated cytogenetic abnormality (86 with del(7q) and 194 with -7). Patients with del(7q) or -7 had similar demographic and disease-related characteristics. Somatic mutations were detected in 79% (93/117) of patients (82% in -7 and 73% in del(7q) group). Median number of mutations per patient was 2 (range 0-8). There was no difference in mutation frequen…
Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP
2020
Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes&rsquo
HMG-CoA reductase promotes protein prenylation and therefore is indispensible for T-cell survival.
2017
AbstractStatins are a well-established family of drugs that lower cholesterol levels via the competitive inhibition of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). In addition, the pleiotropic anti-inflammatory effects of statins on T cells make them attractive as therapeutic drugs in T-cell-driven autoimmune disorders. Since statins do not exclusively target HMGCR and thus might have varying effects on different cell types, we generated a new mouse strain allowing for the tissue-specific deletion of HMGCR. Deletion of HMGCR expression in T cells led to a severe decrease in their numbers with the remaining cells displaying an activated phenotype, with an increased pro…
An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains …
2017
In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs…
Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform
2017
Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therape…
Pyomelanin-producingPseudomonas aeruginosaselected during chronic infections have a large chromosomal deletion which confers resistance to pyocins
2016
When bacterial lineages make the transition from free-living to permanent association with hosts, they can undergo massive gene losses, for which the selective forces within host tissues are unknown. We identified here melanogenic clinical isolates of Pseudomonas aeruginosa with large chromosomal deletions (66 to 270 kbp) and characterized them to investigate how they were selected. When compared with their wild-type parents, melanogenic mutants (i) exhibited a lower fitness in growth conditions found in human tissues, such as hyperosmolarity and presence of aminoglycoside antibiotics, (ii) narrowed their metabolic spectrum with a growth disadvantage with particular carbon sources, includin…