Search results for "demosponge"

showing 10 items of 42 documents

A cryptochrome-based photosensory system in the siliceous sponge Suberites domuncula (Demospongiae)

2010

Based on the light-reactive behavior of siliceous sponges, their intriguing quartz glass-based spicular system and the existence of a light-generating luciferase [Muller WEG et al. (2009) Cell Mol Life Sci 66, 537–552], a protein potentially involved in light reception has been identified, cloned and recombinantly expressed from the demosponge Suberites domuncula. Its sequence displays two domains characteristic of cryptochrome, the N-terminal photolyase-related region and the C-terminal FAD-binding domain. The expression level of S. domuncula cryptochrome depends on animal’s exposure to light and is highest in tissue regions rich in siliceous spicules; in the dark, no cryptochrome transcri…

Siliceous spongebiologyA proteinCell BiologyAnatomybiology.organism_classificationBiochemistryCell biologySuberites domunculaDemospongeSponge spiculeLight sourceCryptochromeLuciferaseMolecular BiologyFEBS Journal
researchProduct

Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis

2005

The skeletal elements (spicules) of the demosponge Lubomirskia baicalensis were analyzed; they are composed of amorphous, non-crystalline silica, and contain in a central axial canal the axial filament which consists of the enzyme silicatein. The axial filament, that orients the spicule in its longitudinal axis exists also in the center of the spines which decorate the spicule. During growth of the sponge, new serially arranged modules which are formed from longitudinally arranged spicule bundles are added at the tip of the branches. X-ray analysis revealed that these serial modules are separated from each other by septate zones (annuli). We describe that the longitudinal bundles of spicule…

SpiculebiologyAnatomyLubomirskia baicalensisbiology.organism_classificationSilicon DioxideSkeleton (computer programming)Magnetic Resonance ImagingModels BiologicalPoriferaRadiographySpongeDemospongeSponge spiculeNuclear magnetic resonanceApex (mollusc)Structural BiologyMicroscopy Electron ScanningAnimalsLongitudinal axisBody PatterningJournal of Structural Biology
researchProduct

Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.

2009

In tandem: High-resolution TEM shows that during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique (ADT) reveals that the nanorods have a layered structure that matches smectitic phyllosilicates. These intracellular nanorods have been considered as precursors of mature spicules. High-resolution microscopy shows that, during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique reveals that the nanorods have a layered stru…

SpiculeMaterials scienceElectronsCrystal structureBiochemistrybioinorganic chemistryDemospongeSponge spiculeMicroscopy Electron TransmissionX-Ray DiffractionnanostructuresAnimalsMolecular BiologyNanotubesbiologyElectron crystallographysilicateinOrganic Chemistrybioinorganic chemistry; electron crystallography; nanostructures; silicatein; spiculesbiology.organism_classificationSilicon DioxidespiculesAmorphous solidPoriferaCrystallographyelectron crystallographyElectron diffractionMicroscopy Electron ScanningMolecular MedicineNanorodChembiochem : a European journal of chemical biology
researchProduct

Bio-Sintering/Bio-Fusion of Silica in Sponge Spicules

2012

The synthesis of siliceous spicules in both demosponges and hexactinellids is enzymatically driven via silicatein. This enzyme exists both intra-spicularly and in the extra-spicular space. It catalyzes the formation of bio-silica constituting the silica lamellae that are formed during the appositional (layer-by-layer) growth of the spicules. The extent of (bio-silica forming) activity of silicatein from the demosponge Suberites domuncula measured in vitro reflects the amount of bio-silica required for the formation of spicules in vivo. It is shown that during growth and maturation of the spicules in demosponges a bio-fusion process occurs that results in an intra-spicular sintering of the s…

0303 health sciencesFusionMaterials sciencePolycondensation reactionbiologyHexactinellid030302 biochemistry & molecular biologySinteringEuplectellaCondensed Matter Physicsbiology.organism_classificationSuberites domuncula03 medical and health sciencesDemospongeSponge spiculeBiophysicsGeneral Materials Science030304 developmental biologyAdvanced Engineering Materials
researchProduct

Hardening of bio-silica in sponge spicules involves an aging process after its enzymatic polycondensation: evidence for an aquaporin-mediated water a…

2011

Abstract Background Spicules, the siliceous skeletal elements of the siliceous sponges, are synthesized enzymatically via silicatein. The product formed, bio-silica, constitutes their inorganic matrix. It remained unexplored which reactions are involved in molding of the amorphous bio-silica and formation of a solid and rigid biomaterial. Methods Cell and molecular biological techniques have been applied to analyze processes resulting in the hardening of the enzymatically synthesized bio-silica. The demosponge Suberites domuncula has been used for the studies. Results Cell aggregates (primmorphs) from the sponge S . domuncula , grown in the presence of Mn-sulfate, form spicules that compris…

SpiculeAbsorption of waterTime FactorsMolecular Sequence DataBiophysicsMineralogyFluorescent Antibody TechniqueGene Expression02 engineering and technologyAquaporinsBiochemistryPhase TransitionAbsorption03 medical and health sciencesMagnesium SulfateSponge spiculeDemospongeAnimalsAmino Acid SequenceMolecular BiologyPhylogeny030304 developmental biology0303 health sciencesSyneresisbiologySequence Homology Amino AcidChemistryReverse Transcriptase Polymerase Chain ReactionBiomaterialSpectrometry X-Ray EmissionWater021001 nanoscience & nanotechnologybiology.organism_classificationSilicon DioxideCathepsinsSuberites domunculaSpongeChemical engineeringMicroscopy Electron Scanning0210 nano-technologySuberitesBiochimica et biophysica acta
researchProduct

Metazoan Circadian Rhythm: Toward an Understanding of a Light-Based Zeitgeber in Sponges

2013

In all eukaryotes, the 24-h periodicity in the environment contributed to the evolution of the molecular circadian clock. We studied some elements of a postulated circadian clock circuit in the lowest metazoans, the siliceous sponges. First, we identified in the demosponge Suberites domuncula the enzyme luciferase that generates photons. Then (most likely), the photons generated by luciferase are transmitted via the biosilica glass skeleton of the sponges and are finally harvested by cryptochrome in the same individual; hence, cryptochrome is acting as a photosensor. This information-transduction system, generation of light (luciferase), photon transmission (through the siliceous spicules),…

Time FactorsLightCircadian clockPlant Science03 medical and health sciencesDemospongeCryptochromeZeitgeberAnimalsLuciferasesGlycoproteins030304 developmental biologyRegulation of gene expression0303 health sciencesbiologyChemistry030302 biochemistry & molecular biologyNuclear Proteinsbiology.organism_classificationCircadian RhythmPoriferaCell biologyCryptochromesSuberites domunculaSpongeGene Expression RegulationGlucosyltransferasesAnimal Science and ZoologyExoribonuclease activitySignal TransductionTranscription Factors
researchProduct

The sponge silicatein-interacting protein silintaphin-2 blocks calcite formation of calcareous sponge spicules at the vaterite stage

2013

Ca-carbonate, the inorganic matrix of the spicules from the calcareous sponges, is formed as the result of an enzyme-catalyzed reaction with the carbonic anhydrase [CA] as a decisive component. The growth and the morphology of the spicules are genetically controlled, and are taxon-specific. In the present study it is shown that the silicatein-interacting protein silintaphin-2 is present at the surface of the siliceous spicules of the demosponge Suberites domuncula and prevents the association of calcareous crystals synthesized in vitro to these skeletal elements. Silintaphin-2 comprises a Ca2+-binding domain that is formed by a 22 amino acid-long peptide, N-DDDSQGEIQSDMAEEEDDDNVD-C. This ve…

CalcitebiologyCalcareous spongeChemistryGeneral Chemical EngineeringGeneral Chemistrybiology.organism_classificationSuberites domunculaSpongechemistry.chemical_compoundCrystallographySponge spiculeDemospongeVateriteCalcareousRSC Adv.
researchProduct

Sponge biosilica formation involves syneresis following polycondensation in vivo.

2011

Syneresis is a process observed during the maturation/aging of silica gels obtained by sol-gel synthesis that results in shrinkage and expulsion of water due to a rearrangement and increase in the number of bridging siloxane bonds. Here we describe how the process of biosilica deposition during spicule ("biosilica" skeleton of the siliceous sponges) formation involves a phase of syneresis that occurs after the enzyme-mediated polycondensation reaction. Primmorphs from the demosponge Suberites domuncula were used to study syneresis and the inhibition of this mechanism. We showed by scanning electron microscopy that spicules added to primmorphs that have been incubated with manganese sulfate …

SpiculeAquaporin02 engineering and technologyAquaporinsBiochemistry03 medical and health scienceschemistry.chemical_compoundDemospongeSponge spiculeSpectroscopy Fourier Transform InfraredAnimalsMolecular Biology030304 developmental biology0303 health sciencesbiologySyneresisSulfatesOrganic ChemistryWater021001 nanoscience & nanotechnologybiology.organism_classificationSilicon DioxideCathepsinsSilicateSuberites domunculaSpongeBiochemistrychemistryGene Expression RegulationManganese CompoundsThermogravimetryBiophysicsMolecular Medicine0210 nano-technologySuberitesChembiochem : a European journal of chemical biology
researchProduct

Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascler…

2007

The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly …

Gene isoformSpiculeHistologyMorphology (linguistics)Molecular Sequence DataFlagellumPathology and Forensic MedicineDemospongeSponge spiculeSequence Analysis ProteinAnimalsAmino Acid SequenceTethya aurantiumCloning MolecularCytoskeletonPhylogenybiologyAnimal StructuresCell BiologyGeneral MedicineAnatomybiology.organism_classificationSilicon DioxideCathepsinsSuberites domunculaSolubilityGeodiaBiophysicsEuropean journal of cell biology
researchProduct

Histochemical and electron microscopic analysis of spiculogenesis in the demosponge Suberites domuncula.

2006

The skeleton of demosponges is built of spicules consisting of biosilica. Using the primmorph system from Suberites domuncula, we demonstrate that silicatein, the biosilica-synthesizing enzyme, and silicase, the catabolic enzyme, are colocalized at the surface of growing spicules as well as in the axial filament located in the axial canal. It is assumed that these two enzymes are responsible for the deposition of biosilica. In search of additional potential structural molecules that might guide the mineralization process during spiculogenesis to species-specific spicules, electron microscopic studies with antibodies against galectin and silicatein were performed. These studies showed that …

HistologybiologyHistocytochemistryGalectinsMolecular Sequence DataFlagellumbiology.organism_classificationSilicon DioxideMineralization (biology)CathepsinsMicrobiologySilica depositionSuberites domunculaMicroscopy ElectronDemospongeSponge spiculeBiophysicsAnimalsAmino Acid SequenceCollagenAnatomySuberitesElectron microscopicGalectinThe journal of histochemistry and cytochemistry : official journal of the Histochemistry Society
researchProduct