6533b7d0fe1ef96bd125ad92

RESEARCH PRODUCT

Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.

Ute KolbUte SchloßmacherWerner E.g. MüllerEnrico MugnaioliXiaohong WangFilipe Natalio

subject

SpiculeMaterials scienceElectronsCrystal structureBiochemistrybioinorganic chemistryDemospongeSponge spiculeMicroscopy Electron TransmissionX-Ray DiffractionnanostructuresAnimalsMolecular BiologyNanotubesbiologyElectron crystallographysilicateinOrganic Chemistrybioinorganic chemistry; electron crystallography; nanostructures; silicatein; spiculesbiology.organism_classificationSilicon DioxidespiculesAmorphous solidPoriferaCrystallographyelectron crystallographyElectron diffractionMicroscopy Electron ScanningMolecular MedicineNanorod

description

In tandem: High-resolution TEM shows that during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique (ADT) reveals that the nanorods have a layered structure that matches smectitic phyllosilicates. These intracellular nanorods have been considered as precursors of mature spicules. High-resolution microscopy shows that, during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique reveals that the nanorods have a layered structure that matches smectitic phyllosilicates. These intracellular nanorods have been considered as precursors of mature spicules.

10.1002/cbic.200800623https://pubmed.ncbi.nlm.nih.gov/19184987