Search results for "silicatein"

showing 3 items of 3 documents

Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.

2009

In tandem: High-resolution TEM shows that during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique (ADT) reveals that the nanorods have a layered structure that matches smectitic phyllosilicates. These intracellular nanorods have been considered as precursors of mature spicules. High-resolution microscopy shows that, during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique reveals that the nanorods have a layered stru…

SpiculeMaterials scienceElectronsCrystal structureBiochemistrybioinorganic chemistryDemospongeSponge spiculeMicroscopy Electron TransmissionX-Ray DiffractionnanostructuresAnimalsMolecular BiologyNanotubesbiologyElectron crystallographysilicateinOrganic Chemistrybioinorganic chemistry; electron crystallography; nanostructures; silicatein; spiculesbiology.organism_classificationSilicon DioxidespiculesAmorphous solidPoriferaCrystallographyelectron crystallographyElectron diffractionMicroscopy Electron ScanningMolecular MedicineNanorodChembiochem : a European journal of chemical biology
researchProduct

Siliceous spicules in marine demosponges (example Suberites domuncula)

2005

All metazoan animals comprise a body plan of different complexity. Since-especially based on molecular and cell biological data-it is well established that all metazoan phyla, including the Porifera (sponges), evolved from a common ancestor the search for common, basic principles of pattern formation (body plan) in all phyla began. Common to all metazoan body plans is the formation of at least one axis that runs from the apical to the basal region; examples for this type of organization are the Porifera and the Cnidaria (diploblastic animals). It seems conceivable that the basis for the formation of the Bauplan in sponges is the construction of their skeleton by spicules. In Demospongiae (w…

EXPRESSIONCnidariaSpiculeGENESPROTEINGeneral Physics and AstronomyPaleontologySponge spiculeStructural BiologyevolutionSturtian glaciationAnimalsGeneral Materials ScienceDEPOSITIONbiosilicaBody PatterningbiologyPhylumsilicateinsilica formationSPONGESCell BiologySilicon Dioxidebiology.organism_classificationCathepsinsSuberites domunculaspiculesPoriferaSuberites domunculaBody planEvolutionary biologyMORPHOGENESISSuberitesMicron
researchProduct

Selenium affects biosilica formation in the demosponge Suberites domuncula

2005

Selenium is a trace element found in freshwater and the marine environment. We show that it plays a major role in spicule formation in the demosponge Suberites domuncula. If added to primmorphs, an in vitro sponge cell culture system, it stimulates the formation of siliceous spicules. Using differential display of transcripts, we demonstrate that, after a 72-h exposure of primmorphs to selenium, two genes are up-regulated; one codes for selenoprotein M and the other for a novel spicule-associated protein. The deduced protein sequence of selenoprotein M (14 kDa) shows characteristic features of metazoan selenoproteins. The spicule-associated protein (26 kDa) comprises six characteristic repe…

SpiculeBlotting WesternMolecular Sequence DataFluorescent Antibody Techniquechemistry.chemical_elementselenium; silica; silicatein; spicules; spongesBiochemistryAntibodiesSeleniumSponge spiculeDemospongeAnimalsAmino Acid SequenceSelenoproteinsMolecular Biologychemistry.chemical_classificationGlutathione PeroxidaseBase SequencebiologyGene Expression ProfilingProteinsCell BiologyAnatomySilicon Dioxidebiology.organism_classificationCathepsinsUp-RegulationAmino acidSuberites domunculaSpongeBiochemistrychemistrySelenoproteinSuberitesSeleniumFEBS Journal
researchProduct