Search results for "spicules"

showing 5 items of 5 documents

Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.

2009

In tandem: High-resolution TEM shows that during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique (ADT) reveals that the nanorods have a layered structure that matches smectitic phyllosilicates. These intracellular nanorods have been considered as precursors of mature spicules. High-resolution microscopy shows that, during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique reveals that the nanorods have a layered stru…

SpiculeMaterials scienceElectronsCrystal structureBiochemistrybioinorganic chemistryDemospongeSponge spiculeMicroscopy Electron TransmissionX-Ray DiffractionnanostructuresAnimalsMolecular BiologyNanotubesbiologyElectron crystallographysilicateinOrganic Chemistrybioinorganic chemistry; electron crystallography; nanostructures; silicatein; spiculesbiology.organism_classificationSilicon DioxidespiculesAmorphous solidPoriferaCrystallographyelectron crystallographyElectron diffractionMicroscopy Electron ScanningMolecular MedicineNanorodChembiochem : a European journal of chemical biology
researchProduct

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-bas…

2014

Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the init…

Materials scienceGeneral Physics and Astronomychemistry.chemical_elementMineralogyReview02 engineering and technologyCalciumlcsh:Chemical technologybonelcsh:Technologysponge03 medical and health scienceschemistry.chemical_compoundVateriteNanotechnologylcsh:TP1-1185General Materials SciencebiocalciteSycon raphanusElectrical and Electronic Engineeringlcsh:Sciencebone formation030304 developmental biologycalcareous spiculesCalcite0303 health sciencesbiologyCalcareous spongelcsh:T021001 nanoscience & nanotechnologybiology.organism_classificationlcsh:QC1-999NanoscienceSpongeCalcium carbonatechemistryChemical engineeringlcsh:Q0210 nano-technologybioprintingCalcareouslcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

The enzyme carbonic anhydrase as an integral component of biogenic Ca-carbonate formation in sponge spicules

2013

The inorganic scaffold of the spicules, the skeletal elements of the calcareous sponges, is formed of calcium carbonate (CaCO3). The growth of the approximately 300-μm large spicules, such as those of the calcareous sponge Sycon raphanus used in the present study, is a rapid process with a rate of about 65 μm/h. The formation of CaCO3 is predominantly carried out by the enzyme carbonic anhydrase (CA). The enzyme from the sponge S. raphanus was isolated and prepared by recombination. The CA-driven deposition of CaCO3 crystallites is dependent on temperature (optimal at 52 °C), the pH value of the reaction assay (7.5/8.0), and the substrate concentration (CO2 and Ca2+). During the initial pha…

Mineralogy010402 general chemistry01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compoundSponge spiculeSpongeSycon raphanus030304 developmental biologyCalcite0303 health sciencesCarbonic anhydrasebiologyCalcareous spongebiology.organism_classification0104 chemical sciencesSpongeCalcium carbonatechemistryChemical engineeringSycon raphanusCarbonateCalcareous spiculesCrystal formationCalcareousFEBS Open Bio
researchProduct

Siliceous spicules in marine demosponges (example Suberites domuncula)

2005

All metazoan animals comprise a body plan of different complexity. Since-especially based on molecular and cell biological data-it is well established that all metazoan phyla, including the Porifera (sponges), evolved from a common ancestor the search for common, basic principles of pattern formation (body plan) in all phyla began. Common to all metazoan body plans is the formation of at least one axis that runs from the apical to the basal region; examples for this type of organization are the Porifera and the Cnidaria (diploblastic animals). It seems conceivable that the basis for the formation of the Bauplan in sponges is the construction of their skeleton by spicules. In Demospongiae (w…

EXPRESSIONCnidariaSpiculeGENESPROTEINGeneral Physics and AstronomyPaleontologySponge spiculeStructural BiologyevolutionSturtian glaciationAnimalsGeneral Materials ScienceDEPOSITIONbiosilicaBody PatterningbiologyPhylumsilicateinsilica formationSPONGESCell BiologySilicon Dioxidebiology.organism_classificationCathepsinsSuberites domunculaspiculesPoriferaSuberites domunculaBody planEvolutionary biologyMORPHOGENESISSuberitesMicron
researchProduct

Selenium affects biosilica formation in the demosponge Suberites domuncula

2005

Selenium is a trace element found in freshwater and the marine environment. We show that it plays a major role in spicule formation in the demosponge Suberites domuncula. If added to primmorphs, an in vitro sponge cell culture system, it stimulates the formation of siliceous spicules. Using differential display of transcripts, we demonstrate that, after a 72-h exposure of primmorphs to selenium, two genes are up-regulated; one codes for selenoprotein M and the other for a novel spicule-associated protein. The deduced protein sequence of selenoprotein M (14 kDa) shows characteristic features of metazoan selenoproteins. The spicule-associated protein (26 kDa) comprises six characteristic repe…

SpiculeBlotting WesternMolecular Sequence DataFluorescent Antibody Techniquechemistry.chemical_elementselenium; silica; silicatein; spicules; spongesBiochemistryAntibodiesSeleniumSponge spiculeDemospongeAnimalsAmino Acid SequenceSelenoproteinsMolecular Biologychemistry.chemical_classificationGlutathione PeroxidaseBase SequencebiologyGene Expression ProfilingProteinsCell BiologyAnatomySilicon Dioxidebiology.organism_classificationCathepsinsUp-RegulationAmino acidSuberites domunculaSpongeBiochemistrychemistrySelenoproteinSuberitesSeleniumFEBS Journal
researchProduct