Search results for "diamond."

showing 10 items of 232 documents

Komparativno istraživanje oblikovanja četiriju rotirajućih sustava

2015

Svrha: U ovom istraživanju analizirali smo rezno područje, vrijeme instrumentacije, održavanje anatomije korijenskog kanala i neinstrumentirana područja dobivena korištenjem instrumenata F360®, Mtwo®, RaCe® i Hyflex® u ISO veličini 35. Materijali i metode: Odabrano je 120 zuba s jednim ravnim kanalom i podijeljeni su u četiri grupe. Radna duljina određena je radiološki. Zubi su rezani dijamantnim diskom, a presjeci su promatrani stereoskopskim mikroskopom Nikon SMZ-2T pod svjetiljkom Intralux 4000-1. Grupe su oblikovane predoperativnom analizom AutoCAD. Zubi su rekonstruirani s pomoću K-proširivača #10 i epoksi ljepila. Svaka grupa instrumentirana je jednim od četiriju sustava. Vrijeme inst…

OrthodonticsInstrumentationRoot canalTooth PreparationA diamondDental High-Speed Equipmentlcsh:RK1-715Light sourcemedicine.anatomical_structurelcsh:DentistryStereo microscopemedicineStatistical analysispreparacija korijenskog kanala brzo rotirajuća stomatološka oprema priprema zuba; poprečni presjecicross-sectionsRoot canal anatomyRoot Canal Preparation; Dental High-Speed Equipment; Tooth Preparation; cross-sectionsGeneral DentistryRoot Canal PreparationResearch ArticleMathematicsActa Stomatologica Croatica
researchProduct

Bone Augmentation in Dental Implantology Using Press-Fit Bone Cylinders and Twin-Principle Diamond Hollow Drills: A Case Series

2009

Background: Bone transplants are mostly prepared with cutting drills, chisels, and rasps. These techniques are difficult for unexperienced surgeons, and the implant interface is less precise due to unstandardized preparation. Cylindrical bone transplants are a known alternative. Current techniques include fixation methods with osteosynthesis screws or the dental implant. Purpose: A new bone cylinder transplant technique is presented using a twin-drill principle resulting in a customized pressfit of the transplant without fixation devices and combining this with the superior grinding properties of a diamond coating. Materials and Methods: New cylindrical diamond hollow drills are used for cu…

OsteosynthesisMaterials sciencebusiness.industrymedicine.medical_treatmentDiamondDentistryengineering.materialDental instrumentsBone augmentationFixation (surgical)surgical procedures operativeDental implantologymedicineengineeringImplantOral SurgeryDental implantbusinessGeneral DentistryClinical Implant Dentistry and Related Research
researchProduct

Stability and nature of the volume collapse of ε-Fe2O3 under extreme conditions

2018

Iron oxides are among the major constituents of the deep Earth’s interior. Among them, the epsilon phase of Fe2O3 is one of the less studied polymorphs and there is a lack of information about its structural, electronic and magnetic transformations at extreme conditions. Here we report the precise determination of its equation of state and a deep analysis of the evolution of the polyhedral units under compression, thanks to the agreement between our experiments and ab-initio simulations. Our results indicate that this material, with remarkable magnetic properties, is stable at pressures up to 27 GPa. Above 27 GPa, a volume collapse has been observed and ascribed to a change of the local env…

PHASE-TRANSFORMATIONEquation of stateMaterials scienceXRDScienceSILICATEIron oxideIRON(III) OXIDEGeneral Physics and Astronomy02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyMantle (geology)ArticlePhysics::Geophysicschemistry.chemical_compoundCondensed Matter::Materials ScienceX-RAY-DIFFRACTIONMAGNETIC PHASESpin crossoverPhase (matter)synchrotron0103 physical sciences[CHIM]Chemical SciencesCRYSTAL-STRUCTUREe-Fe2O3010306 general physicslcsh:ScienceMultidisciplinaryMössbauer spectroscopyIRONQIron(III) oxideSPIN-CROSSOVERGeneral Chemistry021001 nanoscience & nanotechnologySilicateTHERMAL-DECOMPOSITIONEXAFShigh pressureFE2O3 POLYMORPHdiamond anvil cellchemistry13. Climate actionChemical physicslcsh:Q0210 nano-technologyEarth (classical element)Nature Communications
researchProduct

The high-pressure, high-temperature phase diagram of cerium

2020

Abstract We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ∼22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4–oC4–tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1–2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less…

Phase boundaryMaterials scienceTriple pointThermodynamicsDiamondchemistry.chemical_element02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCeriumchemistryPhase (matter)0103 physical sciencesX-ray crystallographyengineeringGeneral Materials ScienceOrthorhombic crystal system010306 general physics0210 nano-technologyPhase diagramJournal of Physics: Condensed Matter
researchProduct

Recent progress in high pressure X-ray absorption spectroscopy studies at the ODE beamline

2020

I.J. and A.K. are grateful to the Latvian Council of Science project no. lzp-2018/2-0353 for financial support. The research leading to these results has been partially supported by the project CALIPSOplus under the Grant Agreement No. 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.

Phase transitionMaterials scienceAbsorption spectroscopyFOS: Physical sciencesReverse Monte Carlo010502 geochemistry & geophysics01 natural sciencesDiamond anvil celllaw.inventionlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[PHYS]Physics [physics]X-ray absorption spectroscopyCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)Condensed Matter PhysicsSynchrotronNanocrystalline materialXANESEXAFSHigh pressureBeamlinenano-polycrystalline diamond anvil cellAtomic physics
researchProduct

EXAFS Study of PressureInduced Phase Transition in SrWO4

2005

Pressure-induced scheelite-to-wolframite structural phase transition in SrWO4 was studied using two complementary techniques—x-ray absorption spectroscopy and x-ray diffraction (XRD). In situ XRD and W L3-edge EXAFS measurements were performed using the synchrotron radiation. The experiments were done at room temperature in the pressure range from 0 to 30 GPa using the diamond anvil cell. The XRD results unambiguously show that SrWO4 transforms from the tetragonal scheelite phase to the monoclinic wolframite-type phase at about 11.7 GPa. Locally this transition appears as a change of the tungsten ions coordination from regular tetrahedral to distorted octahedral. The analysis of the EXAFS d…

Phase transitionMaterials scienceExtended X-ray absorption fine structureAbsorption spectroscopychemistry.chemical_elementTungstenCondensed Matter PhysicsAtomic and Molecular Physics and OpticsDiamond anvil cellCrystallographyTetragonal crystal systemchemistryPhase (matter)Mathematical PhysicsMonoclinic crystal systemPhysica Scripta
researchProduct

Structural transitions under high-pressure in a langasite-type multiferroic Ba3TaFe3Si2O14

2015

Abstract The iron containing langasite family compound Ba3Ta57Fe3Si2O14 was studied at high pressure up to 30 GPa at room temperature by means of in situ X-ray diffraction, Raman and Mossbauer spectroscopies in diamond anvil cell. Two structural transitions at pressures ∼5 and ∼20 GPa are observed. At ∼5 GPa, the low-pressure trigonal P321 phase undergoes phase transition to the most likely P3 structure as manifested by slight increase in the c/a ratio and by anomalies of the Mossbauer and Raman spectra parameters. At ∼20 GPa, the first order phase transition to monoclinic structure occurred with a drop of unit cell volume by 9%. The appearance of the ferroelectric state at such transitions…

Phase transitionMaterials scienceGeneral ChemistryCondensed Matter PhysicsFerroelectricityDiamond anvil cellsymbols.namesakeCrystallographyPhase (matter)X-ray crystallographysymbolsGeneral Materials ScienceMultiferroicsRaman spectroscopyMonoclinic crystal systemSolid State Sciences
researchProduct

Diamondoid Nanostructures as sp 3 ‐Carbon‐Based Gas Sensors

2019

Diamondoids, sp3 -hybridized nanometer-sized diamond-like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3 -C-based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon-based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25-100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p-type sensing properties are achieved from devices based on prim…

Phosphine oxideMaterials science010405 organic chemistrychemistry.chemical_elementGeneral ChemistryChemical vapor deposition010402 general chemistryDiamondoid01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundAdsorptionchemistryChemical engineeringHybrid materialCarbonPhosphinePalladiumAngewandte Chemie International Edition
researchProduct

Selective Preparation of Diamondoid Phosphonates

2014

We present an effective sequence for the preparation of phosphonic acid derivatives of the diamondoids diamantane, triamantane, [121]tetramantane, and [1(2,3)4]pentamantane. The reactions of the corresponding diamondoid hydroxy derivatives with PCl3 in sulfuric or trifluoroacetic acid give mono- as well as didichlorophosphorylated diamondoids in high preparative yields.

Phosphonic acid derivativeschemistry.chemical_compoundchemistryOrganic ChemistryTrifluoroacetic acidOrganic chemistrySequence (biology)DiamondoidDiamantaneThe Journal of Organic Chemistry
researchProduct

Level anti-crossing magnetometry with color centers in diamond

2017

Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4\,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042\,nm laser beam. This leads to an …

PhotoluminescenceMaterials scienceMagnetometerMagnetismchemistry.chemical_elementFOS: Physical sciences02 engineering and technologyengineering.material01 natural scienceslaw.inventionNuclear magnetic resonancelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsAbsorption (electromagnetic radiation)Quantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamond021001 nanoscience & nanotechnologyMeitneriumLaserchemistryengineeringOptoelectronics0210 nano-technologybusinessQuantum Physics (quant-ph)MicrowaveSlow Light, Fast Light, and Opto-Atomic Precision Metrology X
researchProduct