Search results for "dichalcogenides"

showing 9 items of 9 documents

Cavity Control of Excitons in Two-Dimensional Materials

2018

We propose a robust and efficient way of controlling the optical spectra of two-dimensional materials and van der Waals heterostructures by quantum cavity embedding. The cavity light-matter coupling leads to the formation of exciton-polaritons, a superposition of photons and excitons. Our first principles study demonstrates a reordering and mixing of bright and dark excitons spectral features and in the case of a type II van-der-Waals heterostructure an inversion of intra and interlayer excitonic resonances. We further show that the cavity light-matter coupling strongly depends on the dielectric environment and can be controlled by encapsulating the active 2D crystal in another dielectric m…

LetterPhotonBethe–Salpeter equationExcitonAb initioFOS: Physical sciencesPhysics::OpticsBioengineering02 engineering and technologyDielectricExciton-polaritonsMolecular physicsSettore FIS/03 - Fisica Della MateriaSchrödinger equationCondensed Matter::Materials ScienceSuperposition principlesymbols.namesakeMesoscale and Nanoscale Physics (cond-mat.mes-hall)Exciton−polaritonsGeneral Materials ScienceExciton-polaritonsPhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsQEDquantum cavityMechanical Engineeringtransition metal dichalcogenidesMaterials Science (cond-mat.mtrl-sci)first-principlesGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter PhysicsBethe-Salpeter equationsymbols0210 nano-technologyNano Letters
researchProduct

Out-of-plane transport of 1T-TaS2/graphene-based van der Waals heterostructures

2021

Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS2, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density wave (CDW) configurations. It includes quantum hidden phases, superconductivity and exotic quantum spin liquid (QSL) states, which are highly dependent on the out-of-plane stacking of the CDW. In this system, the interlayer stacking of the CDW is crucial for the interpretation of the underlying electronic and magnetic phase diagram. Here, thin-layers of 1T-TaS2 are …

Materials scienceBand gapquantum materialsStackingVan der Waals heterostructuresGeneral Physics and AstronomyFOS: Physical sciencescharge-density waves02 engineering and technologyQuantum entanglementDFT calculations01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciences11. Sustainability1T-TAS2General Materials Science010306 general physicsMaterialsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsGrapheneFermi levelphase-transitionsGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Conductivitat elèctrica021001 nanoscience & nanotechnology2D materialsstatemodelelectrical propertiestransition-metal dichalcogenidessymbolsQuantum spin liquid0210 nano-technologyCharge density wave
researchProduct

Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers

2016

In the race towards two-dimensional electronic and optoelectronic devices, semiconducting transition metal dichalcogenides (TMDCs) from group VIB have been intensively studied in recent years due to the indirect to direct band-gap transition from bulk to the monolayer. However, new materials still need to be explored. For example, semiconducting TMDCs from group IVB have been predicted to have larger mobilities than their counterparts from group VIB in the monolayer limit. In this work we report the mechanical exfoliation of ZrX2 (X = S, Se) from bulk down to the monolayer and we study the dimensionality dependence of the Raman spectra in ambient conditions. We observe Raman signal from bul…

Materials scienceNanotechnology02 engineering and technology010402 general chemistrylcsh:Technology01 natural sciencesSignallcsh:Chemistrysymbols.namesakeTransition metalMonolayerGeneral Materials Sciencelcsh:QH301-705.5InstrumentationFluid Flow and Transfer ProcessesThin layerslcsh:Tbusiness.industryProcess Chemistry and TechnologyBilayertransition metal dichalcogenidesGeneral Engineering2D materialsexfoliation021001 nanoscience & nanotechnologyExfoliation jointlcsh:QC1-9990104 chemical sciencesComputer Science ApplicationsEspectroscòpia RamanSemiconductorlcsh:Biology (General)lcsh:QD1-999Semiconductorslcsh:TA1-2040Chemical physicsRaman spectroscopysymbolsAtomically-thin layerslcsh:Engineering (General). Civil engineering (General)0210 nano-technologybusinessRaman spectroscopylcsh:Physics
researchProduct

Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

2016

The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered,…

NanostructureDopamineOxidetransition metal dichalcogenides; transducers; beyond graphene; biosensors; two-dimensional materials; two-dimensional oxides; transition metal oxidesNanotechnologyReviewBiosensing Techniques02 engineering and technology010402 general chemistrylcsh:Chemical technology01 natural sciencesBiochemistryAnalytical Chemistrylaw.inventionchemistry.chemical_compoundlawtransducerslcsh:TP1-1185transition metal oxidesElectrical and Electronic Engineeringtwo-dimensional materialsInstrumentationMaterial synthesisChemistryGraphenetransition metal dichalcogenidesOxidesDNAKemi021001 nanoscience & nanotechnologyAscorbic acidbiosensorsAtomic and Molecular Physics and OpticsNanostructures0104 chemical sciencestwo-dimensional oxidesbeyond grapheneGlucoseChemical SciencesGraphiteDirect and indirect band gaps0210 nano-technologyBiosensor
researchProduct

Structural and Spectroscopic Studies of the PCP-Bridged Heavy Chalcogen-Centered Monoanions [HC(PPh2E)(PPh2)]− (E = Se, Te) and [HC(PR2E)2]− (E = Se,…

2009

Selenium- and tellurium-containing bis(diphenylphosphinoyl)methane monoanions were prepared by oxidation of the anion [HC(PPh2)2]− with elemental chalcogens. The selenium-containing isopropyl derivative was synthesized by generating [H2C(PiPr2)2] via a reaction between [H2C(PCl2)2] and 4 equiv of iPrMgCl prior to insitu oxidation with selenium followed by deprotonation with LiNiPr2. The solid-state structures of the lithium salts of the monochalcogeno anions TMEDA·Li[HC(PPh2E)(PPh2)] (E = Se (Li7a), E = Te (Li7b)) and the dichalcogeno anions TMEDA·Li[HC(PR2Se)2] (R = Ph (Li8a), iPr (Li8c)) revealed five- and six-membered LiEPCP and LiSePCPSe rings, respectively. The homoleptic group 12 comp…

dichalcogenidesdikalkogenidit
researchProduct

Experimental and Theoretical Investigations of the Contact Ion Pairs Formed by Reactions of the Anions [(EPR2)2N]− (R = iPr, tBu; E = S, Se) with the…

2009

Reactions of the sodium salts [(EPR2)2N]Na(TMEDA) (R = iPr, tBu; E = S, Se) with the iodide salts [(TePR2)2N]I (R = iPr, tBu) in toluene produce the mixed-chalcogen systems [(EPR2)2N][(TePR2)2N] (6b, E = Se, R = tBu; 6c, E = S, R = tBu; 7b, E = Se, R = iPr; 7c, E = S, R = iPr). Compounds 6b, 6c, 7b, and 7c have been characterized in solution by variable-temperature multinuclear (31P, 77Se, and 125Te) NMR spectroscopy and in the solid state by single-crystal X-ray crystallography. The structures are comprised of contact ion pairs linked by bonds between Te and S or Se atoms. For the tert-butyl derivatives 6b and 6c, the anionic half of the molecule is coordinated in a bidentate (E,E′) fashio…

dichalcogenidesdikalkogenidit
researchProduct

Bond Stretching and Redox Behavior in Coinage Metal Complexes of the Dichalcogenide Dianions [(SPh2P)2CEEC(PPh2S)2]2− (E=S, Se): Diradical Character …

2011

The metathetical reactions of a) [Li(tmeda)]2[(S)C(PPh2S)2] (Li2⋅3 c) with CuCl2 and b) [Li(tmeda)]2[(SPh2P)2CSSC(PPh2S)2] (Li2⋅4 c) with two equivalents of CuCl both afford the binuclear CuI complex {Cu2[(SPh2P)2CSSC(PPh2S)2]} (5 c). The elongated (C)S[BOND]S(C) bond (ca. 2.54 and 2.72 Å) of the dianionic ligand observed in the solid-state structure of 5 c indicate the presence of diradical character as supported by theoretical analyses. The treatment of [Li(tmeda)]2[(SPh2P)2CSeSeC(PPh2S)2] (Li2⋅4 b) and Li2⋅4 c with AgOSO2CF3 produce the analogous AgI derivatives, {Ag2[(SPh2P)2CEEC(PPh2S)2]} (6 b, E=Se; 6 c, E=S), respectively. The diselenide complex 6 b exhibits notably weaker Ag[BOND]Se…

dichalcogenidesredox chemistrydikalkogenidithapetus-pelkistys-kemiaryhmän 11 metallitdiradikaaliluonneelectronic structurediradical characterelektronirakennecoinage metals
researchProduct

Strongly Coupled Coherent Phonons in Single-Layer MoS 2

2019

We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($\sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A'_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by…

ramanspectroscopyPhononExcitonGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)thz phonons010402 general chemistry01 natural sciencesMolecular physicssymbols.namesakephotoinduced bandgap renormalizationtransient absorption spectroscopyUltrafast laser spectroscopyMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials Sciencepulsesexciton−phonon interactionPhysicsab initio calculationCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicstransition metal dichalcogenidesgrapheneGeneral Engineeringmonolayer mos2ResonanceMaterials Science (cond-mat.mtrl-sci)excitationmonodynamicsPhysics - Applied Physics021001 nanoscience & nanotechnology0104 chemical sciencesAmplitudeOrders of magnitude (time)coherent phononsexciton-phonon interactionsymbols0210 nano-technologyRaman spectroscopyExcitationACS Nano
researchProduct

Density-Functional Tight-Binding Simulations of Curvature-Controlled Layer Decoupling and Band-Gap Tuning in Bilayer MoS2

2014

Monolayer transition-metal dichalcogenides (TMDCs) display valley-selective circular dichroism due to the presence of time-reversal symmetry and the absence of inversion symmetry, making them promising candidates for valleytronics. In contrast, in bilayer TMDCs both symmetries are present and these desirable valley-selective properties are lost. Here, by using density-functional tight-binding electronic structure simulations and revised periodic boundary conditions, we show that bending of bilayer MoS2 sheets breaks band degeneracies and localizes states on separate layers due to bendinginduced strain gradients across the sheets. We propose a strategy for employing bending deformations in b…

transition-metal dichalcogenidesaugmented-wave method
researchProduct