6533b861fe1ef96bd12c5ae1
RESEARCH PRODUCT
Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers
Víctor García-lópezMarta GalbiatiSamuel Mañas‐valeroAndrés Cantarerosubject
Materials scienceNanotechnology02 engineering and technology010402 general chemistrylcsh:Technology01 natural sciencesSignallcsh:Chemistrysymbols.namesakeTransition metalMonolayerGeneral Materials Sciencelcsh:QH301-705.5InstrumentationFluid Flow and Transfer ProcessesThin layerslcsh:Tbusiness.industryProcess Chemistry and TechnologyBilayertransition metal dichalcogenidesGeneral Engineering2D materialsexfoliation021001 nanoscience & nanotechnologyExfoliation jointlcsh:QC1-9990104 chemical sciencesComputer Science ApplicationsEspectroscòpia RamanSemiconductorlcsh:Biology (General)lcsh:QD1-999Semiconductorslcsh:TA1-2040Chemical physicsRaman spectroscopysymbolsAtomically-thin layerslcsh:Engineering (General). Civil engineering (General)0210 nano-technologybusinessRaman spectroscopylcsh:Physicsdescription
In the race towards two-dimensional electronic and optoelectronic devices, semiconducting transition metal dichalcogenides (TMDCs) from group VIB have been intensively studied in recent years due to the indirect to direct band-gap transition from bulk to the monolayer. However, new materials still need to be explored. For example, semiconducting TMDCs from group IVB have been predicted to have larger mobilities than their counterparts from group VIB in the monolayer limit. In this work we report the mechanical exfoliation of ZrX2 (X = S, Se) from bulk down to the monolayer and we study the dimensionality dependence of the Raman spectra in ambient conditions. We observe Raman signal from bulk to few layers and no shift in the peak positions is found when decreasing the dimensionality. While a Raman signal can be observed from bulk to a bilayer for ZrS2, we could only detect signal down to five layers for flakes of ZrSe2. These results show the possibility of obtaining atomically thin layers of ZrX2 by mechanical exfoliation and represent one of the first steps towards the investigation of the properties of these materials, still unexplored in the two-dimensional limit.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |