Search results for "diffusion MRI"
showing 10 items of 85 documents
In vivo muscle morphology comparison in post-stroke survivors using ultrasonography and diffusion tensor imaging.
2019
AbstractSkeletal muscle architecture significantly influences the performance capacity of a muscle. A DTI-based method has been recently considered as a new reference standard to validate measurement of muscle structure in vivo. This study sought to quantify muscle architecture parameters such as fascicle length (FL), pennation angle (PA) and muscle thickness (tm) in post-stroke patients using diffusion tensor imaging (DTI) and to quantitatively compare the differences with 2D ultrasonography (US) and DTI. Muscle fascicles were reconstructed to examine the anatomy of the medial gastrocnemius, posterior soleus and tibialis anterior in seven stroke survivors using US- and DTI-based techniques…
2016
Focal demyelinated lesions, diffuse white matter (WM) damage and grey matter (GM) atrophy influence directly the disease progression in patients with multiple sclerosis. The aim of this study was to identify specific characteristics of GM and WM structural networks in subjects with clinically isolated syndrome (CIS) in comparison to patients with early relapsing-remitting multiple sclerosis (RRMS). Twenty patients with CIS, thirty three with RRMS and forty healthy subjects were investigated using 3 T-MRI. Diffusion tensor imaging was applied, together with probabilistic tractography and fractional anisotropy (FA) maps for WM and cortical thickness correlation analysis for GM, to determine t…
Network effects and pathways in Deep brain stimulation in Parkinson's disease.
2016
Deep brain stimulation of subthalamic nucleus (STN-DBS) became a standard therapeutic option in Parkinson's disease (PD), even though the underlying modulated network of STN-DBS is still poorly described. Probabilistic tractography and connectivity analysis as derived from diffusion tensor imaging (DTI) were performed together with modelling of implanted electrode positions and linked postoperative clinical outcome. Fifteen patients with idiopathic PD without dementia were selected for DBS treatment. After pre-processing, probabilistic tractography was run from cortical and subcortical seeds of the hypothesized network to targets represented by the positions of the active DBS contacts. The …
Alterations in White Matter Network and Microstructural Integrity Differentiate Parkinson’s Disease Patients and Healthy Subjects
2019
Parkinson’s disease (PD) is a neurodegenerative disease, neuropathologically characterized by progressive loss of neurons in distinct brain areas. We hypothesize that quantifiable network alterations are caused by neurodegeneration. The primary motivation of this study was to assess the specific network alterations in PD patients that are distinct but appear in conjunction with physiological aging. 178 subjects (130 females) stratified into PD patients, young, middle-aged and elderly healthy controls (age- and sex-matched with PD patients), were analyzed using 3D-T1 magnetization-prepared rapid gradient-echo (MPRAGE) and diffusion weighted images acquired in 3T MRI scanner. Diffusion modeli…
The Impacts of Tumor and Tumor Associated Epilepsy on Subcortical Brain Structures and Long Distance Connectivity in Patients With Low Grade Glioma
2018
Low grade gliomas in cerebral cortex often cause symptoms related to higher cerebral functions such as attention, memory and executive function before treatment is initiated. Interestingly, focal tumors residing in one cortical region can lead to a diverse range of symptoms, indicating that the impact of a tumor is extended to multiple brain regions. We hypothesize that the presence of focal glioma in the cerebral cortex leads to alterations of distant subcortical areas and essential white matter tracts. In this study, we analyzed diffusion tensor imaging scans in glioma patients to study the effect of glioma on subcortical gray matter nuclei and long-distance connectivity. We found that th…
Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques
2019
Abstract Magnetic resonance imaging (MRI) is the most important tool for diagnosing multiple sclerosis (MS). However, MRI is still unable to precisely quantify the specific pathophysiological processes that underlie imaging findings in MS. Because autopsy and biopsy samples of MS patients are rare and biased towards a chronic burnt-out end or fulminant acute early stage, the only available methods to identify human disease pathology are to apply MRI techniques in combination with subsequent histopathological examination to small animal models of MS and to transfer these insights to MS patients. This review summarizes the existing combined imaging and histopathological studies performed in M…
Early silent microstructural degeneration and atrophy of the thalamocortical network in multiple sclerosis
2016
Recent studies on patients with clinically isolated syndrome (CIS) and multiple sclerosis (MS) demonstrated thalamic atrophy. Here we addressed the following question: Is early thalamic atrophy in patients with CIS and relapsing-remitting MS (RRMS) mainly a direct consequence of white matter (WM) lesions-as frequently claimed-or is the atrophy stronger correlated to "silent" (nonlesional) microstructural thalamic alterations? One-hundred and ten patients with RRMS, 12 with CIS, and 30 healthy controls were admitted to 3 T magnetic resonance imaging. Fractional anisotropy (FA) was computed from diffusion tensor imaging (DTI) to assess thalamic and WM microstructure. The relative thalamic vol…
Characterizing microstructural tissue properties in multiple sclerosis with diffusion MRI at 7 T and 3 T: The impact of the experimental design
2019
The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., fractional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axonal degeneration in MS patients compared to healthy contr…
Automated Categorization of Parkinsonian Syndromes Using Magnetic Resonance Imaging in a Clinical Setting
2020
Background Machine learning algorithms using magnetic resonance imaging (MRI) data can accurately discriminate parkinsonian syndromes. Validation in patients recruited in routine clinical practice is missing. Objective The aim of this study was to assess the accuracy of a machine learning algorithm trained on a research cohort and tested on an independent clinical replication cohort for the categorization of parkinsonian syndromes. Methods Three hundred twenty-two subjects, including 94 healthy control subjects, 119 patients with Parkinson's disease (PD), 51 patients with progressive supranuclear palsy (PSP) with Richardson's syndrome, 35 with multiple system atrophy (MSA) of the parkinsoni…
Corticospinal Tract Integrity and Long-Term Hand Function Prognosis in Patients With Stroke
2019
Background: The restoration of hand function is an important goal for patients with stroke. This study investigated the relationship between corticospinal tract (CST) integrity and the functional status of the hand in patients with stroke 6 months after onset and evaluated which of the following values would be useful for predicting hand function: fiber number (FN), fractional anisotropy (FA) at the mid-pons, and FA at the pontomedullary junction. Methods: The present retrospective cross-sectional observational study assessed 44 patients with stroke who were able to walk without using a walking aid or orthosis. The final hand function results were classified into three groups: no recovery (…