6533b7ddfe1ef96bd1273f06

RESEARCH PRODUCT

Characterizing microstructural tissue properties in multiple sclerosis with diffusion MRI at 7 T and 3 T: The impact of the experimental design

Eberhard D. PrachtFrauke ZippAmgad DrobyMatteo BastianiSergiu GroppaSilvia De SantisPierre KolberTony StoeckerAlard Roebroeck

subject

0301 basic medicineTime FactorsUltra-high field MRIAxonal pathologyCohort Studies0302 clinical medicineNuclear magnetic resonancemethods [Diffusion Magnetic Resonance Imaging]MicrostructureNODDImedicine.diagnostic_testGeneral NeuroscienceWATER DIFFUSIONmedicine.anatomical_structureResearch DesignKurtosisMulti-shell diffusion MRIAxonal degenerationWHITE-MATTERTENSORAdultMaterials sciencetherapy [Multiple Sclerosis]Sensitivity and SpecificityWhite matterMultiple sclerosis03 medical and health sciencesFractional anisotropyImage Interpretation Computer-Assistedmedicinediagnostic imaging [Nerve Degeneration]Journal ArticleHumansddc:610OPTIMIZATIONMultiple sclerosisinstrumentation [Diffusion Magnetic Resonance Imaging]diagnostic imaging [Multiple Sclerosis]Magnetic resonance imagingQUANTIFICATIONmedicine.diseaseMODELPATHOLOGYDiffusion Magnetic Resonance Imaging030104 developmental biologyRESOLUTIONDENSITYNerve Degeneration030217 neurology & neurosurgeryDiffusion MRI

description

The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., fractional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axonal degeneration in MS patients compared to healthy controls, here our aim is to investigate and compare different diffusion MRI acquisition protocols in their ability to highlight microstructural differences between MS and control tissue over several much used models. For comparison, we contrasted the ability of fractional anisotropy measurements to uncover differences between lesion, normal-appearing white matter (WM), gray matter and healthy tissue under the same imaging protocols. We show that: (1) focal and diffuse differences in several microstructural parameters are observed under clinical settings; (2) advanced models (CHARMED, DKI and NODDI) have increased specificity and sensitivity to neurodegeneration when compared to fractional anisotropy measurements; and (3) both high (3 T) and ultra-high fields (7 T) are viable options for imaging tissue change in MS lesions and normal appearing WM, while higher b-values are less beneficial under the tested short-time (10 min acquisition) conditions.

10.1016/j.neuroscience.2018.03.048http://hdl.handle.net/10261/207966