Search results for "dimensionality"

showing 10 items of 231 documents

Tree Structured Self-Organizing Maps

1999

Publisher Summary This chapter provides an overview of the tree structured self-organizing maps (TS-SOM). It was originally intended as a fast implementation of the self-organizing map (SOM). The chapter explains that TS-SOM is a constructive smoother for a class of dimension reduction problems. There is a well known relation between self-organizing maps and principal curves. Unfortunately in most presentations it is derived by simple reasoning, avoiding the mathematical statement of the problem, which is essential to understand how efficient SOM implementations can be constructed. In this chapter, SOM is derived as a numerical solution of a generic model in a continuous domain, which diffe…

Self-organizing mapTree (data structure)Theoretical computer scienceArtificial neural networkRelation (database)Simple (abstract algebra)Computer scienceDimensionality reductionConstructiveDomain (software engineering)
researchProduct

The situational version of the Brief Cope: Dimensionality and relationships with goal-related variables

2015

This study is aimed at investigating the dimensionality of the situational version of the Brief COPE, a questionnaire that is frequently used to assess a broad range of coping responses to specific difficulties, by comparing five different factor models highlighted in previous studies. It also aimed at exploring the relationships among coping responses, personal goal commitment and progress. The study involved 606 adults (male = 289) ranging in age from 19 to 71. Using confirmatory factor analysis, we compared five models and assessed relationships of coping responses with goal commitment and progress. The results confirmed the theoretical factor structure of the situational Brief COPE. All…

Self-regulation theorySettore M-PSI/01 - Psicologia GeneraleCoping (psychology)confirmatory factor analysislcsh:BF1-990coping; Brief COPE; confirmatory factor analysis; self-regulation theory; personal goalsResearch ReportsGoal commitmentFactor structurePersonal goalConfirmatory factor analysisDevelopmental psychologyself-regulation theorycopinglcsh:PsychologyConfirmatory factor analysiBrief COPEpersonal goalsSituational ethicsPsychologyGeneral PsychologyCurse of dimensionalityFactor analysis
researchProduct

Extraction of Endmembers from Spectral Mixtures

1999

Abstract Linear spectral mixture modeling (LSMM) divides each ground resolution element into its constituent materials using endmembers which represent the spectral characteristics of the cover types. However, it is difficult to identify and estimate the spectral signature of pure components or endmembers which form the scene, since they vary with the scale and purpose of the study. We propose three different methods to estimate the spectra of pure components from a set of unknown mixture spectra. Two of the methods consist in different optimization procedures based on objective functions defined from the coordinate axes of the dominant factors. The third one consists in the design of a neu…

Set (abstract data type)Spectral signatureArtificial neural networkSoil ScienceGeologyScale (descriptive set theory)Limit (mathematics)Noise (video)Computers in Earth SciencesSpectral lineMathematicsCurse of dimensionalityRemote sensingRemote Sensing of Environment
researchProduct

Synthetic phenomenology and high-dimensional buffer hypothesis

2012

Synthetic phenomenology typically focuses on the analysis of simplified perceptual signals with small or reduced dimensionality. Instead, synthetic phenomenology should be analyzed in terms of perceptual signals with huge dimensionality. Effective phenomenal processes actually exploit the entire richness of the dynamic perceptual signals coming from the retina. The hypothesis of a high-dimensional buffer at the basis of the perception loop that generates the robot synthetic phenomenology is analyzed in terms of a cognitive architecture for robot vision the authors have developed over the years. Despite the obvious computational problems when dealing with high-dimensional vectors, spaces wit…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniExploitbusiness.industrymedia_common.quotation_subjectSynthetic phenomenologyCognitive architecturecognitive vision systems CiceRobotMaxima and minimaCiceRobot.Artificial IntelligencePerceptionhigh-dimensional bufferRobotComputer visioncognitive vision systemArtificial intelligenceComputational problemPsychologybusinessPhenomenology (psychology)Curse of dimensionalitymedia_common
researchProduct

FDA dimension reduction techniques and components separation in Fourier-transform infrared spectroscopy

2020

FTIR spectroscopy is a measurement technique used to obtain an infrared spectrum of absorption of a solid (or a liquid or a gas), for the characterization of specific chemical components of materials. When repeated measures are taken on samples of materials, the result is a collection of spectra representing a set of samples from continous functions (signals) defined in the domain of the frequencies. An unifying approach to the study of a collection of FTIR spectra is proposed to deal with the presence of random shifts in the peaks, the identification of representative spectra and finally the characterization of the observed differences: in the functional data framework, the performance of …

Settore SECS-S/01 - StatisticaShape analysis functional data reduction of dimensionality FTIR spectroscopy
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Nonlinear Distribution Regression for Remote Sensing Applications

2020

In many remote sensing applications, one wants to estimate variables or parameters of interest from observations. When the target variable is available at a resolution that matches the remote sensing observations, standard algorithms, such as neural networks, random forests, or the Gaussian processes, are readily available to relate the two. However, we often encounter situations where the target variable is only available at the group level, i.e., collectively associated with a number of remotely sensed observations. This problem setting is known in statistics and machine learning as multiple instance learning (MIL) or distribution regression (DR). This article introduces a nonlinear (kern…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningArtificial neural networkRemote sensing applicationComputer science0211 other engineering and technologies02 engineering and technologyLeast squaresRandom forestMachine Learning (cs.LG)Kernel (linear algebra)symbols.namesakeKernel (statistics)symbolsFOS: Electrical engineering electronic engineering information engineeringGeneral Earth and Planetary SciencesElectrical Engineering and Systems Science - Signal ProcessingElectrical and Electronic EngineeringGaussian processAlgorithm021101 geological & geomatics engineeringCurse of dimensionalityIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Random Feature Approximation for Online Nonlinear Graph Topology Identification

2021

Online topology estimation of graph-connected time series is challenging, especially since the causal dependencies in many real-world networks are nonlinear. In this paper, we propose a kernel-based algorithm for graph topology estimation. The algorithm uses a Fourier-based Random feature approximation to tackle the curse of dimensionality associated with the kernel representations. Exploiting the fact that the real-world networks often exhibit sparse topologies, we propose a group lasso based optimization framework, which is solve using an iterative composite objective mirror descent method, yielding an online algorithm with fixed computational complexity per iteration. The experiments con…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine LearningComputational complexity theoryComputer scienceApproximation algorithmTopology (electrical circuits)Network topologyMachine Learning (cs.LG)Kernel (statistics)FOS: Electrical engineering electronic engineering information engineeringTopological graph theoryElectrical Engineering and Systems Science - Signal ProcessingOnline algorithmAlgorithmCurse of dimensionality
researchProduct

Spatial noise-aware temperature retrieval from infrared sounder data

2020

In this paper we present a combined strategy for the retrieval of atmospheric profiles from infrared sounders. The approach considers the spatial information and a noise-dependent dimensionality reduction approach. The extracted features are fed into a canonical linear regression. We compare Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used for these purposes but our analysis shows that one can gain significant improvements of the error rates when using…

Signal Processing (eess.SP)FOS: Computer and information sciencesComputer Science - Machine Learningbusiness.industryComputer scienceDimensionality reductionFeature extraction0211 other engineering and technologiesWord error ratePattern recognitionRegression analysis02 engineering and technologyMachine Learning (cs.LG)Principal component analysisLinear regression0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceElectrical Engineering and Systems Science - Signal ProcessingbusinessSpatial analysis021101 geological & geomatics engineering
researchProduct

An Online Metric Learning Approach through Margin Maximization

2011

This work introduces a method based on learning similarity measures between pairs of objects in any representation space that allows to develop convenient recognition algorithms. The problem is formulated through margin maximization over distance values so that it can discriminate between similar (intra-class) and dissimilar (inter-class) elements without enforcing positive definiteness of the metric matrix as in most competing approaches. A passive-aggressive approach has been adopted to carry out the corresponding optimization procedure. The proposed approach has been empirically compared to state of the art metric learning on several publicly available databases showing its potential bot…

Similarity (geometry)business.industryComputationDimensionality reductionSemi-supervised learningMachine learningcomputer.software_genrek-nearest neighbors algorithmPositive definitenessMetric (mathematics)Artificial intelligenceRepresentation (mathematics)businesscomputerMathematics
researchProduct