Search results for "dimensionality"

showing 10 items of 231 documents

Salient Pixels and Dimensionality Reduction for Display of Multi/Hyperspectral Images

2012

International audience; Dimensionality Reduction (DR) of spectral images is a common approach to different purposes such as visualization, noise removal or compression. Most methods such as PCA or band selection use either the entire population of pixels or a uniformly sampled subset in order to compute a projection matrix. By doing so, spatial information is not accurately handled and all the objects contained in the scene are given the same emphasis. Nonetheless, it is possible to focus the DR on the separation of specific Objects of Interest (OoI), simply by neglecting all the others. In PCA for instance, instead of using the variance of the scene in each spectral channel, we show that i…

Spectral Images[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingChannel (digital image)Computer scienceMultispectral image0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingProjection (linear algebra)[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing0202 electrical engineering electronic engineering information engineeringIAPRComputer vision021101 geological & geomatics engineeringSaliencyPixelbusiness.industryDimensionality reductionHyperspectral imagingPattern recognitionDimensionality reductionVisualizationComputer Science::Computer Vision and Pattern Recognition020201 artificial intelligence & image processingArtificial intelligenceFocus (optics)business[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Sample size planning for survival prediction with focus on high-dimensional data

2011

Sample size planning should reflect the primary objective of a trial. If the primary objective is prediction, the sample size determination should focus on prediction accuracy instead of power. We present formulas for the determination of training set sample size for survival prediction. Sample size is chosen to control the difference between optimal and expected prediction error. Prediction is carried out by Cox proportional hazards models. The general approach considers censoring as well as low-dimensional and high-dimensional explanatory variables. For dimension reduction in the high-dimensional setting, a variable selection step is inserted. If not all informative variables are included…

Statistics and ProbabilityClustering high-dimensional dataClinical Trials as TopicLung NeoplasmsModels StatisticalKaplan-Meier EstimateEpidemiologyProportional hazards modelDimensionality reductionGene ExpressionFeature selectionKaplan-Meier EstimateBiostatisticsPrognosisBrier scoreSample size determinationCarcinoma Non-Small-Cell LungSample SizeCensoring (clinical trials)StatisticsHumansProportional Hazards ModelsMathematicsStatistics in Medicine
researchProduct

Online Principal Component Analysis in High Dimension: Which Algorithm to Choose?

2017

Summary Principal component analysis (PCA) is a method of choice for dimension reduction. In the current context of data explosion, online techniques that do not require storing all data in memory are indispensable to perform the PCA of streaming data and/or massive data. Despite the wide availability of recursive algorithms that can efficiently update the PCA when new data are observed, the literature offers little guidance on how to select a suitable algorithm for a given application. This paper reviews the main approaches to online PCA, namely, perturbation techniques, incremental methods and stochastic optimisation, and compares the most widely employed techniques in terms statistical a…

Statistics and ProbabilityComputer scienceComputationDimensionality reductionIncremental methods02 engineering and technologyMissing data01 natural sciences010104 statistics & probabilityData explosionStreaming dataPrincipal component analysis0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0101 mathematicsStatistics Probability and UncertaintyAlgorithmEigendecomposition of a matrixInternational Statistical Review
researchProduct

A review of second‐order blind identification methods

2021

Second-order source separation (SOS) is a data analysis tool which can be used for revealing hidden structures in multivariate time series data or as a tool for dimension reduction. Such methods are nowadays increasingly important as more and more high-dimensional multivariate time series data are measured in numerous fields of applied science. Dimension reduction is crucial, as modeling such high-dimensional data with multivariate time series models is often impractical as the number of parameters describing dependencies between the component time series is usually too high. SOS methods have their roots in the signal processing literature, where they were first used to separate source sign…

Statistics and ProbabilityComputer sciencebusiness.industryDimensionality reductionSecond order blind identificationPattern recognitionArtificial intelligencebusinessBlind signal separationWIREs Computational Statistics
researchProduct

Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity

2014

Recent development of intensity estimation for inhomogeneous spatial point processes with covariates suggests that kerneling in the covariate space is a competitive intensity estimation method for inhomogeneous Poisson processes. It is not known whether this advantageous performance is still valid when the points interact. In the simplest common case, this happens, for example, when the objects presented as points have a spatial dimension. In this paper, kerneling in the covariate space is extended to Gibbs processes with covariates-dependent chemical activity and inhibitive interactions, and the performance of the approach is studied through extensive simulation experiments. It is demonstr…

Statistics and ProbabilityDimensionality reductionNonparametric statisticsPoisson distributionPoint processsymbols.namesakeDimension (vector space)CovariatesymbolsEconometricsStatistics::MethodologyStatistical physicsStatistics Probability and UncertaintySmoothingMathematicsParametric statisticsStatistica Neerlandica
researchProduct

Multivariate GARCH estimation via a Bregman-proximal trust-region method

2011

The estimation of multivariate GARCH time series models is a difficult task mainly due to the significant overparameterization exhibited by the problem and usually referred to as the "curse of dimensionality". For example, in the case of the VEC family, the number of parameters involved in the model grows as a polynomial of order four on the dimensionality of the problem. Moreover, these parameters are subjected to convoluted nonlinear constraints necessary to ensure, for instance, the existence of stationary solutions and the positive semidefinite character of the conditional covariance matrices used in the model design. So far, this problem has been addressed in the literature only in low…

Statistics and ProbabilityMathematical optimizationPolynomialComputer scienceDiagonalComputational Finance (q-fin.CP)[QFIN.CP]Quantitative Finance [q-fin]/Computational Finance [q-fin.CP]FOS: Economics and businessQuantitative Finance - Computational FinanceDimension (vector space)0502 economics and business91G70 65C60050207 economicsMathematics050205 econometrics Trust regionStatistical Finance (q-fin.ST)Series (mathematics)Applied Mathematics05 social sciencesConstrained optimizationQuantitative Finance - Statistical Finance[QFIN.ST]Quantitative Finance [q-fin]/Statistical Finance [q-fin.ST]Computational MathematicsNonlinear systemComputational Theory and MathematicsParametrizationCurse of dimensionality
researchProduct

Model selection in linear mixed-effect models

2019

Linear mixed-effects models are a class of models widely used for analyzing different types of data: longitudinal, clustered and panel data. Many fields, in which a statistical methodology is required, involve the employment of linear mixed models, such as biology, chemistry, medicine, finance and so forth. One of the most important processes, in a statistical analysis, is given by model selection. Hence, since there are a large number of linear mixed model selection procedures available in the literature, a pressing issue is how to identify the best approach to adopt in a specific case. We outline mainly all approaches focusing on the part of the model subject to selection (fixed and/or ra…

Statistics and ProbabilityMixed modelEconomics and EconometricsMathematical optimizationLinear mixed modelApplied MathematicsModel selectionMDLVariance (accounting)LASSOCovarianceGeneralized linear mixed modelMixed model selectionLasso (statistics)Shrinkage methodsModeling and SimulationMCPAICBICSettore SECS-S/01 - StatisticaSocial Sciences (miscellaneous)AnalysisSelection (genetic algorithm)Curse of dimensionality
researchProduct

Some extensions of multivariate sliced inverse regression

2007

Multivariate sliced inverse regression (SIR) is a method for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we extend the existing approaches, based on the usual SIR I which only uses the inverse regression curve, to methods using properties of the inverse conditional variance. Contrary to the existing ones, these new methods are not blind for symmetric dependencies and rely on the SIR II or SIRα. We also propose their corresponding pooled slicing versions. We illustrate the usefulness of these approaches on simulation studies.

Statistics and ProbabilityMultivariate statisticsApplied MathematicsDimensionality reductionInverseOutcome variableModeling and SimulationStatisticsSliced inverse regressionStatistics::MethodologyStatistics Probability and UncertaintyConditional varianceRegression problemsMathematicsRegression curveJournal of Statistical Computation and Simulation
researchProduct

Asymptotics for pooled marginal slicing estimator based on SIRα approach

2005

Pooled marginal slicing (PMS) is a semiparametric method, based on sliced inverse regression (SIR) approach, for achieving dimension reduction in regression problems when the outcome variable y and the regressor x are both assumed to be multidimensional. In this paper, we consider the SIR"@a version (combining the SIR-I and SIR-II approaches) of the PMS estimator and we establish the asymptotic distribution of the estimated matrix of interest. Then the asymptotic normality of the eigenprojector on the estimated effective dimension reduction (e.d.r.) space is derived as well as the asymptotic distributions of each estimated e.d.r. direction and its corresponding eigenvalue.

Statistics and ProbabilityNumerical AnalysisDimensionality reductionStatisticsSliced inverse regressionAsymptotic distributionEstimatorRegression analysisStatistics Probability and UncertaintyMarginal distributionEffective dimensionEigenvalues and eigenvectorsMathematicsJournal of Multivariate Analysis
researchProduct

Dimension reduction for time series in a blind source separation context using r

2021

Funding Information: The work of KN was supported by the CRoNoS COST Action IC1408 and the Austrian Science Fund P31881-N32. The work of ST was supported by the CRoNoS COST Action IC1408. The work of JV was supported by Academy of Finland (grant 321883). We would like to thank the anonymous reviewers for their comments which improved the paper and package considerably. Publisher Copyright: © 2021, American Statistical Association. All rights reserved. Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first red…

Statistics and ProbabilitySeries (mathematics)Stochastic volatilityComputer scienceblind source separation; supervised dimension reduction; RsignaalinkäsittelyDimensionality reductionRsignaalianalyysiContext (language use)CovarianceBlind signal separationQA273-280aikasarja-analyysiR-kieliDimension (vector space)monimuuttujamenetelmätBlind source separationStatistics Probability and UncertaintyTime seriesAlgorithmSoftwareSupervised dimension reduction
researchProduct