Search results for "discretization"
showing 10 items of 237 documents
Physically-Based Approach to the Mechanics of Strong Non-Local Linear Elasticity Theory
2009
In this paper the physically-based approach to non-local elasticity theory is introduced. It is formulated by reverting the continuum to an ensemble of interacting volume elements. Interactions between adjacent elements are classical contact forces while long-range interactions between non-adjacent elements are modelled as distance-decaying central body forces. The latter are proportional to the relative displacements rather than to the strain field as in the Eringen model and subsequent developments. At the limit the displacement field is found to be governed by an integro-differential equation, solved by a simple discretization procedure suggested by the underlying mechanical model itself…
Special Splines of Exponential Type for the Solutions of Mass Transfer Problems in Multilayer Domains
2016
We consider averaging methods for solving the 3-D boundary-value problem of second order in multilayer domain. The special hyperbolic and exponential type splines, with middle integral values of piece-wise smooth function interpolation are considered. With the help of these splines the problems of mathematical physics in 3-D with piece-wise coefficients are reduced with respect to one coordinate to 2-D problems. This procedure also allows to reduce the 2-D problems to 1-D problems and the solution of the approximated problemsa can be obtained analytically. In the case of constant piece-wise coefficients we obtain the exact discrete approximation of a steady-state 1-D boundary-value problem.…
Bounding Techniques and Their Application to Simplified Plastic Analysis of Structures
1990
In the framework of the simplified analysis methods for elastoplastic analysis problems, the bounding techniques possess an important role. A class of these techniques, based on the so-called perturbation method, are here presented with reference to finite element discretized structures. A general bounding principle is presented and its applications are illustrated by means of numerical examples.
FROM DISCRETE KINETIC AND STOCHASTIC GAME THEORY TO MODELLING COMPLEX SYSTEMS IN APPLIED SCIENCES
2004
This paper deals with some methodological aspects related to the discretization of a class of integro-differential equations modelling the evolution of the probability distribution over the microscopic state of a large system of interacting individuals. The microscopic state includes both mechanical and socio-biological variables. The discretization of the microscopic state generates a class of dynamical systems defining the evolution of the densities of the discretized state. In general, this yields a system of partial differential equations replacing the continuous integro-differential equation. As an example, a specific application is discussed, which refers to modelling in the field of…
Solving a model for 1-D, three-phase flow vertical equilibrium processes in a homogeneous porous medium by means of a Weighted Essentially Non Oscill…
2013
Mathematical models of multi-phase flow are useful in some engineering applications like enhanced oil recovery, filtration of pollutants into subsurface, etc. In this work, we derive a mathematical model for the motion of one-dimensional three-phase flow in a porous medium under the condition of vertical equilibrium, which can be viewed as an extension of some two-phase flow models described in the literature. Our model involves a system of two partial differential equations in the form of viscous conservation laws, whose solutions may contain very sharp transitions. We show that a high-order/high resolution Weighted Essentially Non Oscillatory scheme is an appropriate tool to discretize th…
On a topology optimization problem governed by two-dimensional Helmholtz equation
2015
The paper deals with a class of shape/topology optimization problems governed by the Helmholtz equation in 2D. To guarantee the existence of minimizers, the relaxation is necessary. Two numerical methods for solving such problems are proposed and theoretically justified: a direct discretization of the relaxed formulation and a level set parametrization of shapes by means of radial basis functions. Numerical experiments are given.
Efficiency of quantum Monte Carlo impurity solvers for dynamical mean-field theory
2007
Since the inception of the dynamical mean-field theory, numerous numerical studies have relied on the Hirsch-Fye quantum Monte Carlo (HF-QMC) method for solving the associated impurity problem. Recently developed continuous-time algorithms (CT-QMC) avoid the Trotter discretization error and allow for faster configuration updates, which makes them candidates for replacing HF-QMC. We demonstrate, however, that a state-of-the-art implementation of HF-QMC (with extrapolation of discretization delta_tau -> 0) is competitive with CT-QMC. A quantitative analysis of Trotter errors in HF-QMC estimates and of appropriate delta_tau values is included.
Adaptive mesh reconstruction for hyperbolic conservation laws with total variation bound
2012
We consider 3-point numerical schemes, that resolve scalar conservation laws, that are oscillatory either to their dispersive or anti-diffusive nature. The spatial discretization is performed over non-uniform adaptively redefined meshes. We provide a model for studying the evolution of the extremes of the oscillations. We prove that proper mesh reconstruction is able to control the oscillations; we provide bounds for the Total Variation (TV) of the numerical solution. We, moreover, prove under more strict assumptions that the increase of the TV, due to the oscillatory behavior of the numerical schemes, decreases with time; hence proving that the overall scheme is TV Increase-Decreasing (TVI…
Conservation Laws and Asymptotic Behavior of a Model of Social Dynamics
2008
Abstract A conservative social dynamics model is developed within a discrete kinetic framework for active particles, which has been proposed in [M.L. Bertotti, L. Delitala, From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences, Math. Mod. Meth. Appl. Sci. 14 (2004) 1061–1084]. The model concerns a society in which individuals, distinguished by a scalar variable (the activity) which expresses their social state, undergo competitive and/or cooperative interactions. The evolution of the discrete probability distribution over the social state is described by a system of nonlinear ordinary differential equations. The asymptotic trend of their solutions…
Approximate Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws
2017
Abstract The Lax–Wendroff time discretization is an alternative method to the popular total variation diminishing Runge–Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and efficient than RKDG methods of comparable order of accuracy, the formulation of LWDG methods involves the successive computation of exact flux derivatives. This procedure allows one to construct schemes of arbitrary formal order of accuracy in space and time. A new approximation procedure avoids the computation of ex…