Search results for "distribution function"
showing 10 items of 348 documents
An exact method for the determination of differential leakage factors in electrical machines with non-symmetrical windings
2016
An exact and simple method for the determination of differential leakage factors in polyphase ac electrical machines with non-symmetrical windings is presented in this paper. The method relies on the properties of Gorges polygons that are used to transform an infinite series expressing the differential leakage factor into a finite sum in order to significantly simplify the calculations. Some examples are shown and discussed in order to practically demonstrate the effectiveness of the proposed method.
Analysis of directional effects on atmospheric correction
2013
Abstract Atmospheric correction in the Visible and Near Infrared (VNIR) spectral range of remotely sensed data is significantly simplified if we assume a Lambertian target. However, natural surfaces are anisotropic. Therefore, this assumption will introduce an error in surface directional reflectance estimates and consequently in the estimation of vegetation indexes such as the Normalized Difference Vegetation Index (NDVI) and the surface albedo retrieval. In this paper we evaluate the influence of directional effects on the atmospheric correction and its impact in the NDVI and albedo estimation. First, we derived the NDVI and surface albedo from data corrected assuming a Lambertian surface…
Evaluation of the MODIS Albedo product over a heterogeneous agricultural area
2013
In this article, the Moderate Resolution Imaging Spectroradiometer MODIS Bidirectional Reflectance Distribution Function BRDF/Albedo product MCD43 is evaluated over a heterogeneous agricultural area in the framework of the Earth Observation: Optical Data Calibration and Information Extraction EODIX project campaign, which was developed in Barrax Spain in June 2011. In this method, two models, the RossThick-LiSparse-Reciprocal RTLSR which corresponds to the MODIS BRDF algorithm and the RossThick-Maignan-LiSparse-Reciprocal RTLSR-HS, were tested over airborne data by processing high-resolution images acquired with the Airborne Hyperspectral Scanner AHS sensor. During the campaign, airborne im…
Measurement of the W boson mass
1996
The W boson mass is measured using proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 1.7fb(-1) recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/p(T) distribution of a sample of W ->mu y decays and the phi* distribution of a sample of Z -> mu mu decays the W boson mass is determined to be
On the Structure of Amorphous Metals
2005
A generalized Newton iteration for computing the solution of the inverse Henderson problem
2020
We develop a generalized Newton scheme IHNC for the construction of effective pair potentials for systems of interacting point-like particles.The construction is made in such a way that the distribution of the particles matches a given radial distribution function. The IHNC iteration uses the hypernetted-chain integral equation for an approximate evaluation of the inverse of the Jacobian of the forward operator. In contrast to the full Newton method realized in the Inverse Monte Carlo (IMC) scheme, the IHNC algorithm requires only a single molecular dynamics computation of the radial distribution function per iteration step, and no further expensive cross-correlations. Numerical experiments…
Canopy directional emissivity: Comparison between models
2005
Land surface temperature plays an important role in many environmental studies, as for example the estimation of heat fluxes and evapotranspiration. In order to obtain accurate values of land surface temperature, atmospheric, emissivity and angular effects should be corrected. This paper focuses on the analysis of the angular variation of canopy emissivity, which is an important variable that has to be known to correct surface radiances and obtain surface temperatures. Emissivity is also involved in the atmospheric corrections since it appears in the reflected downwelling atmospheric term. For this purpose, five different methods for simulating directional canopy emissivity have been analyz…
Comparison of top of the atmosphere GERB measured radiances with independent radiative transfer simulations obtained at the Valencia Anchor Station a…
2005
The purpose of this work is to compare top of the atmosphere (TOA) radiances as measured by the Geostationary Earth Radiation Budget (GERB) instrument on board the METEOSAT-8 (METEOSAT Second Generation) satellite to equivalent independent radiances obtained from radiative transfer simulations performed using surface and atmospheric measured parameters gathered during the GERB Surface Ground Validation Campaign at the Valencia Anchor Station (VAS) reference area in February 2004. In this paper we try to extend the methodology previously developed and tested for the NASA Clouds and the Earth's Radiant Energy System (CERES) instrument in the framework of the SEVIRI and GERB Cal/val Area for L…
Analysis of broadband surface BRDFs derived from TOA SW CERES measurements for surfaces classified by the IGBP land cover
2012
Most studies on the reflectance properties of the Earth's surface are addressed estimating the bidirectional reflectance distribution function (BRDF) of high spatial resolution and high spectral resolution satellite measurements. This article assesses the development of broadband (BB) BRDFs from radiances corresponding to large footprints classified according to the International Geosphere-Biosphere Programme (IGBP) land-cover classification. Top-of-atmosphere (TOA) shortwave (SW) CERES (Clouds and the Earth's Radiant Energy System) measurements are employed to invert the bidirectional reflectance factor (BRF) Rahman–Pinty–Verstraete (RPV) model for regions identified with the same IGBP typ…
Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy
2018
AIF acknowledge support by the US Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02 03ER15476. AIF acknowledges support by the Laboratory Directed Research and Development Program through LDRD 18-047 of Brookhaven National Laboratory under U.S. Department of Energy Contract No. DE-SC0012704 for initiating his research in machine learning methods. The help of the beamline staff at ELETTRA (project 20160412) synchrotron radiation facility is acknowledged. RMC-EXAFS and MD-EXAFS simulations were performed on the LASC cluster-type computer at Institute of Solid State Physics of the University of Latvia.