Search results for "docking"
showing 10 items of 299 documents
Structure-Based Discovery of Small Molecules Binding to RNA
2017
Ribonucleic acids (RNAs) constitute attractive drug targets. The wealth of structural information about RNAs is steadily increasing making it possible to use this information for the design of new ligands. Two methods that make heavy use of structural knowledge for ligand discovery are molecular docking and fragment screening. In molecular docking the structure of the binding site is used as a template for the design of new ligands using computational methods whereas in fragment screening biophysical methods are used for the detection of weak binding ligands which are subsequently elaborated into tighter binding molecules. In this chapter, we give an overview of both methods in the context …
Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.
2021
Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by…
Targeting Bacterial Sortase A with Covalent Inhibitors: 27 New Starting Points for Structure-Based Hit-to-Lead Optimization.
2019
Because of its essential role as a bacterial virulence factor, enzyme sortase A (SrtA) has become an attractive target for the development of new antivirulence drugs against Gram-positive infections. Here we describe 27 compounds identified as covalent inhibitors of
Reverse screening on indicaxanthin from Opuntia ficus-indica as natural chemoactive and chemopreventive agent
2018
Indicaxanthin is a bioactive and bioavailable betalain pigment extracted from Opuntia ficus indica fruits. Indicaxanthin has pharmacokinetic proprieties, rarely found in other phytochemicals, and it has been demonstrated that it provides a broad-spectrum of pharmaceutical activity, exerting anti-proliferative, anti-inflammatory, and neuromodulator effects. The discovery of the Indicaxanthin physiological targets plays an important role in understanding the biochemical mechanism. In this study, combined reverse pharmacophore mapping, reverse docking, and text-based database search identified Inositol Trisphosphate 3-Kinase (ITP3K-A), Glutamate carboxypeptidase II (GCPII), Leukotriene-A4 hydr…
Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses
2015
Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding e…
Fluorinated Chaperone−β-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease
2017
Amphiphilic glycomimetics encompassing a rigid, undistortable nor-tropane skeleton based on 1,6-anhydro-L-idonojirimycin and a polyfluorinated antenna, when formulated as the corresponding inclusion complexes with β-cyclodextrin (βCD), have been shown to behave as pharmacological chaperones (PCs) that efficiently rescue lysosomal β- glucocerebrosidase mutants associated to the neuronopathic variants of Gaucher disease (GD), including the highly refractory L444P/L444P and L444P/P415R single nucleotide polymorphs, in patient fibroblasts. The body of work here presented includes the design criteria for the PC prototype, the synthesis of a series of candidates, the characterization of the PC:βC…
Screening of potent phytochemical inhibitors against SARS-CoV-2 protease and its two Asian mutants
2021
Abstract Background COVID-19, declared a pandemic in March 2020 by the World Health Organization is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus has already killed more than 2.3 million people worldwide. Object The principal intent of this work was to investigate lead compounds by screening natural product library (NPASS) for possible treatment of COVID-19. Methods Pharmacophore features were used to screen a large database to get a small dataset for structure-based virtual screening of natural product compounds. In the structure-based screening, molecular docking was performed to find a potent inhibitor molecule against the main protease (Mpro) of SARS-…
Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei
2016
A series of dipeptide nitriles known as inhibitors of mammalian cathepsins were evaluated for inhibition of rhodesain, the cathepsin L-like protease of Trypanosoma brucei. Compound 35 consisting of a Leu residue fitting into the S2 pocket and a triarylic moiety consisting of thiophene, a 1,2,4-oxadiazole and a phenyl ring fitting into the S3 pocket, and compound 33 with a 3-bromo-Phe residue (S2) and a biphenyl fragment (S3) were found to inhibit rhodesain in the single-digit nanomolar range. The observed steep structure-activity relationship could be explained by covalent docking simulations. With their high selectivity indices (ca. 200) and the good antitrypanosomal activity (8μM) the com…
2-methoxyestradiol impacts on amino acids-mediated metabolic reprogramming in osteosarcoma cells by interaction with NMDA receptor
2017
Deregulation of serine and glycine metabolism, have been identified to function as metabolic regulators in supporting tumor cell growth. The role of serine and glycine in regulation of cancer cell proliferation is complicated, dependent on concentrations of amino acids and tissue-specific. D-serine and glycine are coagonists of N-methyl-D-aspartate receptor subunit GRIN1. Importantly, NMDA receptors are widely expressed in cancer cells and play an important role in regulation of cell death, proliferation and metabolism of numerous malignancies. The aim of the present work was to associate the metabolism of glycine and D-serine with the anticancer activity of 2-methoxyestradiol. 2-methoxyest…
Indeno[1,2,3-cd]pyrene and picene mediate actions via estrogen receptor α signaling pathway in in vitro cell systems, altering gene expression.
2020
Currently, the environmental impact of ubiquitous plastic debris triggered quite some public attention. However, the global impact of microplastic on human health is by and large either unknown or neglected. By looking at the underlying biochemical mechanisms leading to the global health threat microplastic was discovered to carry persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAH), to marine life. The effect of microplastic-ingestion in the human body remains unfortunately somewhat elusive as of yet. For this reason, we screened for compounds binding to the human estrogen receptor α (ERα) and identified the PAH compounds indeno[1,2,3-cd]pyrene (Indpy) and picene (…