Search results for "dynamic range"
showing 10 items of 60 documents
Wearable photoplethysmography device prototype for wireless cardiovascular monitoring
2014
The aim of the study was to develop a prototype system of the smart garment for real time telemetric monitoring of human cardiovascular activity. Two types of photoplethysmography (PPG) sensors for low noise and artefact free signal recording from various sites of the human body that were suitable for integration into smart textile were investigated. The reflectance sensors with single and multiple photodiodes based on "pulse-duration-based signal conversion" signal acquisition principle were designed and evaluated. The technical parameters of the system were measured both on bench and in vivo. Overall, both types of PPG sensors showed acceptable signal quality SNR 86.56±3.00 dB, dynamic ra…
Configurable bandwidth imaging spectrometer based on acousto-optic tunable filter
2005
This paper presents a new portable instrument called Autonomous Tunable Filtering System (ATFS), developed for highly customisable imaging spectrometry in the VIS-NIR range. The ATFS instrument consists of an Acousto-Optic Tunable Filter (AOTF), an optical system, a Radio Frequency (RF) driver based on a Direct Digital Synthesiser (DDS) and control software. The ATFS can be attached to a variety of high-performance monochrome cameras. The system works as a spectral bandpass filter whose wavelength can be selected between 400nm and 1000nm and whose bandwidth can be adjusted between 4nm and 50nm. The filter can be tuned electronically at a very high speed and accuracy, thanks to the DDS versa…
Dynamic characterization for the dielectric electroactive polymer fundamental sheet
2012
Published version of an article published in the journal: International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-012-4423-6 A study into the appropriateness of characterizing the dynamics of the dielectric electroactive polymer (DEAP) fundamental sheet has been performed. Whereby a model describing the dynamics of the DEAP fundamental sheet is developed, parameters of the models are determined using experimental/simulation results, and verification has been conducted to determine the precision of the dynamic model. The precision for the DEAP sheet-obtained dynamic model could not be verified unless some parameters c…
Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment
2013
NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the bet…
Perceptually Optimized Image Rendering
2017
We develop a framework for rendering photographic images by directly optimizing their perceptual similarity to the original visual scene. Specifically, over the set of all images that can be rendered on a given display, we minimize the normalized Laplacian pyramid distance (NLPD), a measure of perceptual dissimilarity that is derived from a simple model of the early stages of the human visual system. When rendering images acquired with a higher dynamic range than that of the display, we find that the optimization boosts the contrast of low-contrast features without introducing significant artifacts, yielding results of comparable visual quality to current state-of-the-art methods, but witho…
Automatic image enhancement by picture fusion
2005
This paper describes an automatic technique able to fuse different images of the same scene, acquired with different camera settings, in order to obtain an enhanced single representation of the interested. This allows to extend the functionalities (depth of field, dynamic range) of medium and low cost digital cameras. When Multi-Scale Decomposition (MSD) is used on differently focused images, magnification and blurring effects of lens focusing systems often compromise the final image with unpleasant artifacts. In our approach new techniques able to reduce these artifacts are introduced. Even if the algorithm has been essentially designed to extend depth of field it can be also used on multi…
Ghost Detection and Removal for High Dynamic Range Images: Recent Advances
2012
23 pages; International audience; High dynamic range (HDR) image generation and display technologies are becoming increasingly popular in various applications. A standard and commonly used approach to obtain an HDR image is the multiple exposures fusion technique which consists of combining multiple images of the same scene with varying exposure times. However, if the scene is not static during the sequence acquisition, moving objects manifest themselves as ghosting artefacts in the final HDR image. Detecting and removing ghosting artefacts is an important issue for automatically generating HDR images of dynamic scenes. The aim of this paper is to provide an up-to-date review of the recentl…
HDR image generation from LDR image with highlight removal
2015
The emergency of High Dynamic Range (HDR) display device impels the study of generating HDR image from Low Dynamic Range (LDR) image. Most existing generation methods apply complicated handing to highlight areas in image, which perplexes the algorithm and introduces the probability of generating artifacts. In this paper, we investigate a separated scheme: instead of sophisticated treatment to the highlight areas during expanding, the processing to the highlight areas is separated from the dynamic range expansion, which facilitates the framework and reduces the artifacts. The image quality metric shows that the separated scheme reveals more details with little artifacts compared to the algor…
Performance data of optically stimulable irradiated materials (doped alkali halides) oriented for imaging and dosimetry purposes
1997
Performance characteristics of a doped alkali halide (KBr:In)-based imaging plate (IP) and dosemeter (D) both the devices utilizing optically stimulated luminescence (OSL) and suitable for UV-light and x-ray energy recording are described. By exploiting (silicon) photodiode array as a photodetector, the detective quantum efficiency of 0.1 for IP (KBr:In) can be achieved. A very wide dynamic range, 1010:1 for UV (6.35 eV) and 1011:1 for x-ray (44 kV tube voltage) OSL recording at the spatial resolution of 1 mm2, is favorable for digital imaging and considerably improves image quality. These possibilities are illustrated by presenting available information capacities, energy consumption per b…
A Design of Scintillator Tiles Read Out by Surface-Mounted SiPMs for a Future Hadron Calorimeter
2015
Precision calorimetry using highly granular sampling calorimeters is being developed based on the particle flow concept within the CALICE collaboration. One design option of a hadron calorimeter is based on silicon photomultipliers (SiPMs) to detect photons generated in plastic scintillator tiles. Driven by the need of automated mass assembly of around ten million channels stringently required by the high granularity, we developed a design of scintillator tiles directly coupled with surface-mounted SiPMs. A cavity is created in the center of the bottom surface of each tile to provide enough room for the whole SiPM package and to improve collection of the light produced by incident particles…