Search results for "dynamical system"

showing 10 items of 523 documents

Numerical analysis of dynamical systems: unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimensi…

2018

In this article, on the example of the known low-order dynamical models, namely Lorenz, Rossler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden chaotic attractors and hidden transient chaotic sets and their numerical investigation are considered. The problems of the numerical characterization of a chaotic attractor by calculating finite-time time Lyapunov exponents and finite-time Lyapunov dimension along one trajectory are demonstrated using the example of computing unstable periodic orbits in the Rossler system. Using the example of the Vallis system describing the El…

Lyapunov functionHistoryMathematics::Dynamical SystemsDynamical systems theoryNumerical analysisChaoticFOS: Physical sciencesLyapunov exponentLorenz systemNonlinear Sciences - Chaotic DynamicsComputer Science ApplicationsEducationNonlinear Sciences::Chaotic Dynamicssymbols.namesakeAttractorsymbolsTrajectoryApplied mathematicsChaotic Dynamics (nlin.CD)Mathematics
researchProduct

Stability analysis for stochastic hybrid systems: A survey

2014

This survey addresses stability analysis for stochastic hybrid systems (SHS), which are dynamical systems that combine continuous change and instantaneous change and that also include random effects. We re-emphasize the common features found in most of the models that have appeared in the literature, which include stochastic switched systems, Markov jump systems, impulsive stochastic systems, switching diffusions, stochastic impulsive systems driven by renewal processes, diffusions driven by Lévy processes, piecewise-deterministic Markov processes, general stochastic hybrid systems, and stochastic hybrid inclusions. Then we review many of the stability concepts that have been studied, inclu…

Lyapunov functionLyapunov stabilityContinuous-time stochastic processLyapunov functionDynamical systems theoryStochastic differential equationMarkov chainStochastic stabilityConverse theoremStochastic hybrid systemsymbols.namesakeStochastic differential equationSettore ING-INF/04 - AutomaticaControl and Systems EngineeringControl theoryHybrid systemStability theorysymbolsSwitching diffusionStochastic optimizationElectrical and Electronic EngineeringRobustnessStochastic switched systemMathematics
researchProduct

Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system

2015

The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a {hidden attractor} in the case of multistability as well as a classical {self-excited attractor}. The hidden attractor in this system can be localized by analytical-numerical methods based on the {continuation} and {perpetual points}. For numerical study of the attractors' dimension the concept of {finite-time Lyapunov dimension} is developed. A conjecture on the Lyapunov dimension of self-excited attractors and the notion of {exact Lyapunov dimension} are discussed. A comparative survey on the computation of the finite-time Lyapunov expon…

Lyapunov functionMathematics::Dynamical SystemsChaoticAerospace EngineeringFOS: Physical sciencesOcean EngineeringLyapunov exponent01 natural sciences010305 fluids & plasmasadaptive algorithmssymbols.namesakehidden attractorsDimension (vector space)0103 physical sciencesAttractorApplied mathematicsElectrical and Electronic Engineering010301 acousticsMultistabilityMathematicsAdaptive algorithmApplied MathematicsMechanical EngineeringNumerical analysisNonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Chaotic DynamicsControl and Systems EngineeringLyapunov dimensionsymbolsperpetual pointsChaotic Dynamics (nlin.CD)finite-time Lyapunov exponents
researchProduct

Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations

2014

Nowadays the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. It may lead to a confusion since there are at least two well-known definitions, which are used in computations: the upper bounds of the exponential growth rate of the norms of linearized system solutions (Lyapunov characteristic exponents, LCEs) and the upper bounds of the exponential growth rate of the singular values of the fundamental matrix of linearized system (Lyapunov exponents, LEs). In this work the relation between Lyapunov exponents and Lyapunov characteristic exponents is discussed. The invariance…

Lyapunov functionMathematics::Dynamical SystemsComputationFOS: Physical sciencesAerospace EngineeringOcean EngineeringDynamical Systems (math.DS)Lyapunov exponent01 natural sciencessymbols.namesakeExponential growthComputer Science::Systems and Control0103 physical sciencesFOS: MathematicsApplied mathematics0101 mathematicsElectrical and Electronic EngineeringMathematics - Dynamical Systems010301 acousticsMathematicsApplied MathematicsMechanical Engineering010102 general mathematicsNonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Chaotic DynamicsSingular valueFundamental matrix (linear differential equation)Control and Systems EngineeringsymbolsDiffeomorphismChaotic Dynamics (nlin.CD)Characteristic exponent
researchProduct

Lyapunov graphs for circle valued functions

2018

International audience; Conley index theory is used to obtain results for flows associated to circular Lyapunov functions defined on general compact smooth n-manifolds. This is done in terms of their underlying circular Lyapunov digraphs, which are generalizations of Morse digraphs, by extensively studying their combinatorics, invariants and realizability.

Lyapunov functionNovikov theoryPure mathematicsMathematics::Dynamical Systems010102 general mathematicsTEORIA DO ÍNDICEMorse code01 natural scienceslaw.inventionLyapunov graphs010101 applied mathematicssymbols.namesakeMorse functions[MATH.MATH-GN]Mathematics [math]/General Topology [math.GN]lawRealizabilitysymbolsGeometry and TopologyConley index theory0101 mathematicsMathematics::Symplectic GeometryGeneric circularMSC: primary 37B30 37B35 37D15 secondary 37E35MathematicsConley index
researchProduct

Chaotic Scattering in the Gaussian Potential

1995

It is well known that general classical Hamiltonian dynamical systems have as a rule chaotic behaviour. By such a term one usually understands a sensitive dependence on initial conditions which manifests itself in the topology of phase space. For the most studied case of bounded motions this behaviour is detected, for example, by analysing the Poincare surfaces of section and by calculating Lyapunov characteristic exponents. The question then naturally arises of what are the effects of this complexity on the unbounded motions, i.e., on scattering phenomena. The signature of chaotic dynamics in these scattering regions of phase space has been the object of several papers appeared mainly in t…

Lyapunov functionPhysicssymbols.namesakeClassical mechanicsDynamical systems theoryBounded functionChaotic scatteringPhase spacesymbolsChaoticCovariant Hamiltonian field theoryHamiltonian (quantum mechanics)
researchProduct

Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu–Morioka System

2015

In applied investigations, the invariance of the Lyapunov dimension under a diffeomorphism is often used. However, in the case of irregular linearization, this fact was not strictly considered in the classical works. In the present work, the invariance of the Lyapunov dimension under diffeomorphism is demonstrated in the general case. This fact is used to obtain the analytic exact upper bound of the Lyapunov dimension of an attractor of the Shimizu–Morioka system. peerReviewed

Lyapunov functionPure mathematicsMathematics::Dynamical SystemsGeneral Physics and Astronomylcsh:AstrophysicsLyapunov exponentUpper and lower boundssymbols.namesakeShimizu-Morioka systemDimension (vector space)Attractorlcsh:QB460-466Lyapunov equationLyapunov redesignlcsh:ScienceMathematicsta111Mathematical analysisShimizu–Morioka systemlcsh:QC1-999Nonlinear Sciences::Chaotic DynamicssymbolsLyapunov dimensionlcsh:QDiffeomorphismLyapunov exponentlcsh:PhysicsEntropy
researchProduct

Cycles in continuous and discrete dynamical systems : computations, computer-assisted proofs, and computer experiments

2009

The present work is devoted to calculation of periodic solutions and bifurcation research in quadratic systems, Lienard system, and non-unimodal one-dimensional discrete maps using modern computational capabilities and symbolic computing packages.In the first chapter the problem of Academician A.N. Kolmogorov on localization and modeling of cycles of quadratic systems is considered. For the investigation of small limit cycles (so-called local 16th Hilbert’s problem) the method of calculation of Lyapunov quantities (or Poincaré-Lyapunov constants) is used. To calculate symbolic expressions for the Lyapunov quantities the Lyapunov method to the case of non-analytical systems was generalized. …

Lyapunov quantitiesmallintaminenLienard systemPLLlimit cyclessymbolinen laskentabifurcationdynaamiset järjestelmätKolmogorov's problemdynamical systemsmatemaattiset mallitphase locked loopstietojenkäsittely
researchProduct

Variable length Markov chains and dynamical sources

2010

Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the ``comb'' and the ``bamboo blossom'', we find a necessary and sufficient condition for the existence and the unicity of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the gener…

MSC 60J05 MSC 37E05[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Probability (math.PR)[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Probabilistic dynamical sources[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Variable length Markov chainsOccurrences of words[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]60J05 37E05FOS: MathematicsMathematics - Dynamical SystemsDynamical systems of the intervalDirichlet series[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability
researchProduct

Application of multivariant decision tree technique in high performance football: The female and male corner kick.

2019

The use of multidimensional statistical technique based on decision trees is of recent application in sports science. In the case of football, this technique has not yet been sufficiently proven. The aim of the present study was to search for different success models for the cor- ners in the FIFA World Cup 2014 and FIFA Women's World Cup 2015. For this, the statistical analysis focused on the search for classification models for the different criteria considered (shot, shot between the three posts and goal), based on the creation of different decision trees that allow the most important variables to be identified quickly and efficiently. For this, 1117 corners were collected between the two…

MaleMultivariate statisticsDecision AnalysisComputer scienceEntropyDonesSocial SciencesFootballcomputer.software_genreSystems Science0302 clinical medicineMathematical and Statistical TechniquesPsychologyEntropy (energy dispersal)MultidisciplinaryEntropy (statistical thermodynamics)PhysicsQStatisticsRSoftware EngineeringMenSports ScienceDynamical SystemsPhysical SciencesMedicineEngineering and TechnologyThermodynamicsFemaleGamesManagement EngineeringResearch ArticleSportsAdultComputer and Information SciencesSports scienceScienceDecision treeAthletic PerformanceMachine learningResearch and Analysis Methods03 medical and health sciencesEntropy (classical thermodynamics)SoccerEntropy (information theory)HumansWomenStatistical MethodsEntropy (arrow of time)Behaviorbusiness.industrySoftware ToolsDecision TreesOffensiveBiology and Life Sciences030229 sport sciencesMultiple criteria decision makingFutbolHomesPresa de decisions multicriteriRecreationArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryMathematicsEntropy (order and disorder)ForecastingPloS one
researchProduct