Search results for "dynamical system"

showing 10 items of 523 documents

Variational principles for fluid dynamics on rough paths

2022

In this paper, we introduce a new framework for parametrization schemes (PS) in GFD. Using the theory of controlled rough paths, we derive a class of rough geophysical fluid dynamics (RGFD) models as critical points of rough action functionals. These RGFD models characterize Lagrangian trajectories in fluid dynamics as geometric rough paths (GRP) on the manifold of diffeomorphic maps. Three constrained variational approaches are formulated for the derivation of these models. The first is the Clebsch formulation, in which the constraints are imposed as rough advection laws. The second is the Hamilton-Pontryagin formulation, in which the constraints are imposed as right-invariant rough vector…

Mathematics - Analysis of PDEsGeneral MathematicsProbability (math.PR)Fluid Dynamics (physics.flu-dyn)FOS: MathematicsFOS: Physical sciencesVDP::Matematikk og Naturvitenskap: 400Dynamical Systems (math.DS)Physics - Fluid DynamicsMathematics - Dynamical SystemsMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct

Kernel estimates for nonautonomous Kolmogorov equations with potential term

2014

Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients and a possibly unbounded potential term.

Mathematics - Analysis of PDEsMathematics::Dynamical SystemsFOS: Mathematics35K10 35K08 37L40Analysis of PDEs (math.AP)
researchProduct

Invariant distributions, Beurling transforms and tensor tomography in higher dimensions

2014

In the recent articles \cite{PSU1,PSU3}, a number of tensor tomography results were proved on two-dimensional manifolds. The purpose of this paper is to extend some of these methods to manifolds of any dimension. A central concept is the surjectivity of the adjoint of the geodesic ray transform, or equivalently the existence of certain distributions that are invariant under geodesic flow. We prove that on any Anosov manifold, one can find invariant distributions with controlled first Fourier coefficients. The proof is based on subelliptic type estimates and a Pestov identity. We present an alternative construction valid on manifolds with nonpositive curvature, based on the fact that a natur…

Mathematics - Differential GeometryBeurling transformDynamical Systems (math.DS)invariant distributionsMathematics::Geometric Topologymanifoldsmath.DGMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: Mathematicstensor tomographyMathematics::Differential GeometryMathematics - Dynamical Systemsmath.APmath.DSAnalysis of PDEs (math.AP)
researchProduct

Counting common perpendicular arcs in negative curvature

2013

Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…

Mathematics - Differential GeometryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]37D40 37A25 53C22 30F4001 natural sciencesDomain (mathematical analysis)Bowen-Margulis measurecommon perpendicularequidistributiondecay of correlation0502 economics and businessortholength spectrummixingAsymptotic formulaSectional curvatureTangent vectorMathematics - Dynamical Systems0101 mathematicsExponential decayskinning measurelaskeminenMathematicsconvexityApplied Mathematicsta111010102 general mathematics05 social sciencesMathematical analysisRegular polygonnegative curvatureRiemannian manifoldGibbs measureManifoldKleinian groups[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]countingMathematics::Differential Geometrygeodesic arc050203 business & management
researchProduct

Carleman estimates for geodesic X-ray transforms

2018

In this article we introduce an approach for studying the geodesic X-ray transform and related geometric inverse problems by using Carleman estimates. The main result states that on compact negatively curved manifolds (resp. nonpositively curved simple or Anosov manifolds), the geodesic vector field satisfies a Carleman estimate with logarithmic weights (resp. linear weights) on the frequency side. As a particular consequence, on negatively curved simple manifolds the geodesic X-ray transform with attenuation given by a general connection and Higgs field is invertible modulo natural obstructions. The proof is based on showing that the Pestov energy identity for the geodesic vector field com…

Mathematics - Differential GeometryMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: MathematicsMathematics::Differential GeometryDynamical Systems (math.DS)Mathematics - Dynamical SystemsAnalysis of PDEs (math.AP)
researchProduct

Counting and equidistribution in Heisenberg groups

2014

We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension $2$. We prove a Mertens' formula for the integer points over a quadratic imaginary number fields $K$ in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over $K$ in Heisenberg groups. We give a counting formula for the cubic points over $K$ in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over $K$, and a counting and equidistribution result for …

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsHyperbolic geometryMathematics::Number Theory[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]11E39 11F06 11N45 20G20 53C17 53C22 53C55chainEquidistribution theorem01 natural sciencesHeisenberg groupequidistributioncommon perpendicularIntegerLight cone0103 physical sciencesHeisenberg groupcubic point0101 mathematicsCygan distanceMertens formulaComplex projective planeMathematicsDiscrete mathematicsAMS codes: 11E39 11F06 11N45 20G20 53C17 53C22 53C55Mathematics - Number TheorySesquilinear formHeisenberg groups010102 general mathematicsHermitian matrixcomplex hyperbolic geometry[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]sub-Riemannian geometry[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]counting010307 mathematical physics
researchProduct

The X-Ray Transform for Connections in Negative Curvature

2016

We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…

Mathematics - Differential GeometryPure mathematicsHermitian bundlesGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Connection (vector bundle)Boundary (topology)Dynamical Systems (math.DS)X-ray transforms01 natural sciencesinversio-ongelmatHiggs fieldsTensor fieldMathematics - Analysis of PDEsFOS: MathematicsSectional curvatureMathematics - Dynamical Systems0101 mathematicsmath.APMathematical PhysicsPhysicsX-ray transformParallel transport010102 general mathematicsStatistical and Nonlinear Physicsconnections010101 applied mathematicsHiggs fieldmath.DGDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Mathematics::Differential Geometrymath.DSAnalysis of PDEs (math.AP)[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]Communications in Mathematical Physics
researchProduct

Algebraicity of analytic maps to a hyperbolic variety

2018

Let $X$ be an algebraic variety over $\mathbb{C}$. We say that $X$ is Borel hyperbolic if, for every finite type reduced scheme $S$ over $\mathbb{C}$, every holomorphic map $S^{an}\to X^{an}$ is algebraic. We use a transcendental specialization technique to prove that $X$ is Borel hyperbolic if and only if, for every smooth affine curve $C$ over $\mathbb{C}$, every holomorphic map $C^{an}\to X^{an}$ is algebraic. We use the latter result to prove that Borel hyperbolicity shares many common features with other notions of hyperbolicity such as Kobayashi hyperbolicity.

Mathematics - Differential GeometryPure mathematicsMathematics::Dynamical SystemsGeneral Mathematics010102 general mathematicsHolomorphic functionAlgebraic varietyType (model theory)01 natural sciencesMathematics::Geometric Topology010101 applied mathematicsMathematics - Algebraic GeometryDifferential Geometry (math.DG)Scheme (mathematics)FOS: MathematicsAffine transformationTranscendental number0101 mathematicsVariety (universal algebra)Algebraic numberAlgebraic Geometry (math.AG)32Q45Mathematics
researchProduct

Counting and equidistribution in quaternionic Heisenberg groups

2020

AbstractWe develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.

Mathematics - Differential GeometryPure mathematicsMathematics::Dynamical SystemsGeneral MathematicsHyperbolic geometryMathematics::Number Theory[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dimension (graph theory)11E39 11F06 11N45 20G20 53C17 53C22 53C55[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Equidistribution theorem01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]differentiaaligeometriaSet (abstract data type)Light cone0103 physical sciences0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicslukuteoriaQuaternion algebraMathematics - Number Theory010102 general mathematicsryhmäteoriaHermitian matrix[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Action (physics)010307 mathematical physicsMathematics::Differential Geometry[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
researchProduct

Nonexistence of Quasiconformal Maps Between Certain Metric Measure Spaces

2013

We provide new conditions that ensure that two metric measure spaces are not quasiconformally equivalent. As an application, we deduce that there exists no quasiconformal map between the sub-Riemannian Heisenberg and roto-translation groups.

Mathematics - Differential Geometrymetric measure spacesPure mathematicsMathematics::Dynamical SystemsMathematics::Complex VariablesGeneral MathematicsExistential quantificationta111010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)quasiconformal equivalenceDifferential Geometry (math.DG)Mathematics - Metric Geometryquasiconformal mappingsMathematics - Classical Analysis and ODEs0103 physical sciencesMetric (mathematics)Classical Analysis and ODEs (math.CA)FOS: MathematicsMathematics (all)010307 mathematical physics0101 mathematicsMathematicsInternational Mathematics Research Notices
researchProduct