Search results for "dynamical system"
showing 10 items of 523 documents
Discretization of harmonic measures for foliated bundles
2012
We prove in this note that there is, for some foliated bundles, a bijective correspondance between Garnett's harmonic measures and measures on the fiber that are stationary for some probability measure on the holonomy group. As a consequence, we show the uniqueness of the harmonic measure in the case of some foliations transverse to projective fiber bundles.
Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples
2016
We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.
Hadamard-type theorems for hypersurfaces in hyperbolic spaces
2006
Abstract We prove that a bounded, complete hypersurface in hyperbolic space with normal curvatures greater than −1 is diffeomorphic to a sphere. The completeness condition is relaxed when the normal curvatures are bounded away from −1. The diffeomorphism is constructed via the Gauss map of some parallel hypersurface. We also give bounds for the total curvature of this parallel hypersurface.
Self-affine sets in analytic curves and algebraic surfaces
2018
We characterize analytic curves that contain non-trivial self-affine sets. We also prove that compact algebraic surfaces do not contain non-trivial self-affine sets. peerReviewed
Period-multiplying bifurcations and multifurcations in conservative mappings
1983
The authors have investigated numerically and analytically the period-doubling bifurcations and multifurcations of the periodic orbits of the conservative sine-Gordon mappings. They have derived a general equation for the appearance of multifurcations in conservative mappings. In agreement with many recent studies, they also find evidence that such mappings possess universality properties. They also discuss the role of multifurcations in conservative mappings exhibiting chaotic behaviour.
Stabilization of heterodimensional cycles
2011
We consider diffeomorphisms $f$ with heteroclinic cycles associated to saddles $P$ and $Q$ of different indices. We say that a cycle of this type can be stabilized if there are diffeomorphisms close to $f$ with a robust cycle associated to hyperbolic sets containing the continuations of $P$ and $Q$. We focus on the case where the indices of these two saddles differ by one. We prove that, excluding one particular case (so-called twisted cycles that additionally satisfy some geometrical restrictions), all such cycles can be stabilized.
On the existence of attractors
2009
On every compact 3-manifold, we build a non-empty open set $\cU$ of $\Diff^1(M)$ such that, for every $r\geq 1$, every $C^r$-generic diffeomorphism $f\in\cU\cap \Diff^r(M)$ has no topological attractors. On higher dimensional manifolds, one may require that $f$ has neither topological attractors nor topological repellers. Our examples have finitely many quasi attractors. For flows, we may require that these quasi attractors contain singular points. Finally we discuss alternative definitions of attractors which may be better adapted to generic dynamics.
Local structure of self-affine sets
2011
The structure of a self-similar set with open set condition does not change under magnification. For self-affine sets the situation is completely different. We consider planar self-affine Cantor sets E of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that within small square neighborhoods of almost each point x in E, with respect to many product measures on address space, E is well approximated by product sets of an interval and a Cantor set. Even though E is totally disconnected, the limit sets have the product structure with interval fibres, reminiscent to the view of attractors of chaotic differentia…
Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension
1994
AbstractWe construct an example of transitive Anosov flow on a compact 3-manifold, which admits a transversal torus and is not the suspension of an Anosov diffeomorphism.
The horospherical Gauss-Bonnet type theorem in hyperbolic space
2006
We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space and show that totally umbilic hypersurfaces with vanishing cur- vatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space. + (i1) by using the model in Minkowski space. We introduced the notion of hyperbolic Gauss indicatrices slightly modified the definition of hyperbolic Gauss maps. The notion of hyperbolic indicatrices is independent of the choice of the model of hyperbolic space. Using the hyperbolic Gauss indicatrix, we defined the principal hyperbolic curv…