Search results for "dynamical system"
showing 10 items of 523 documents
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
2021
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…
Attractors/Basin of Attraction
2020
It is a controversial issue to decide who first coined the term “attractor”. According to Peter Tsatsanis, the editor of the English version of Prédire n’est pas expliquer, it was René Thom who first introduced such a term. It is necessary, however, to remember that Thom thought that it was first introduced by the American mathe- matician Steven Smale, “although Smale says it was Thom that coined the neolo- gism “attractor”“(Tsatsanis 2010: 63–64 n. 20). From this point of view, Bob Williams expressed a more cautious opinion by saying that “the word “attractor” was invented by these guys, Thom and Smale” (Cucker and Wong 2000: 183). But other mathematicians are of the opinion that the term …
Grid methods and Hilbert space basis for simulations of quantum dynamics
1999
We discuss spatial grid methods adapted to the structure of Hilbert spaces, used to simulate quantum mechanical systems. We review the construction of Finite Basis Representation (FBR) and the Discrete Variable Representation (DVR). A mixed representation (pseudo-spectral method) is constructed through a quadrature relation linking both bases.
RISQUE ASSOCIE A L'UTILISATION DE LA LOI DE BENFORD POUR DETECTER DES VENTES FRAUDULEUSES DE BIENS INNOVANTS A LA MODE
2010
Benford's law has been promoted as providing the auditors with a turnkey solution for fraud detection. The purpose of this paper is to show it is not always possible to detect fraudulent sales with that law. We use sales in volume of game consoles in Japan (since 1989), in United-States, in France, in Germany and in United-Kingdom (since 2000). After reviewing briefly the literature and our study design, the chi-square test and the bias analysis were used to measure the goodness-of-fit to Benford's law. Despite the absence of actual fraud, these sale series of fashion goods are not significantly in conformity with Benford's law. Thus, for the detection of fraudulent sales in this sector, th…
IWCFTA2012 Keynote Speech I - Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to …
2012
Summary form only given. In this survey an attempt is made to reflect the current trends in the synthesis of analytical and numerical methods to develop efficient analytical-numerical methods, based on harmonic linearization, applied bifurcation theory and numerical methods, for searching hidden oscillations.
Attracteurs et bifurcations en dynamique holomorphe
2019
Critical behavior of a colloid-polymer mixture confined between walls
2006
We investigate the influence of confinement on phase separation in colloid-polymer mixtures. To describe the particle interactions, the colloid-polymer model of Asakura and Oosawa [J. Chem. Phys. 22, 1255 (1954)] is used. Grand canonical Monte Carlo simulations are then applied to this model confined between two parallel hard walls, separated by a distance D=5 colloid diameters. We focus on the critical regime of the phase separation and look for signs of crossover from three-dimensional (3D) Ising to two-dimensional (2D) Ising universality. To extract the critical behavior, finite size scaling techniques are used, including the recently proposed algorithm of Kim et al. [Phys. Rev. Lett. 91…
Experimental study of electrical FitzHugh-Nagumo neurons with modified excitability
2006
International audience; We present an electronical circuit modelling a FitzHugh-Nagumo neuron with a modified excitability. To characterize this basic cell, the bifurcation curves between stability with excitation threshold, bistability and oscillations are investigated. An electrical circuit is then proposed to realize a unidirectional coupling between two cells, mimicking an inter-neuron synaptic coupling. In such a master-slave configuration, we show experimentally how the coupling strength controls the dynamics of the slave neuron, leading to frequency locking, chaotic behavior and synchronization. These phenomena are then studied by phase map analysis. The architecture of a possible ne…
Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos
2019
In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed…
On hyperbolic type involutions
2001
We give a bound on the number of hyperbolic knots which are double covered by a fixed (non hyperbolic) manifold in terms of the number of tori and of the invariants of the Seifert fibred pieces of its Jaco-Shalen-Johannson decomposition. We also investigate the problem of finding the non hyperbolic knots with the same double cover of a hyperbolic one and give several examples to illustrate the results.