Search results for "dynamical system"

showing 10 items of 523 documents

Modeling crowd dynamics through coarse-grained data analysis

2018

International audience; Understanding and predicting the collective behaviour of crowds is essential to improve the efficiency of pedestrian flows in urban areas and minimize the risks of accidents at mass events. We advocate for the development of crowd traffic management systems, whereby observations of crowds can be coupled to fast and reliable models to produce rapid predictions of the crowd movement and eventually help crowd managers choose between tailored optimization strategies. Here, we propose a Bi-directional Macroscopic (BM) model as the core of such a system. Its key input is the fundamental diagram for bi-directional flows, i.e. the relation between the pedestrian fluxes and d…

Data AnalysisOperations researchComputer scienceFLOW[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR]macroscopic model0904 Chemical EngineeringTransportation02 engineering and technologycomputer.software_genre01 natural sciences010305 fluids & plasmas[SHS]Humanities and Social Sciences[SCCO]Cognitive scienceCrowds0903 Biomedical Engineering0102 Applied Mathematics11. Sustainability0202 electrical engineering electronic engineering information engineeringCluster AnalysisApplied Mathematicsbi-directional fluxcollective behaviourGeneral Medicine[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]Computational MathematicsCore (game theory)Modeling and Simulation[SCCO.PSYC]Cognitive science/Psychology020201 artificial intelligence & image processingGeneral Agricultural and Biological SciencesLife Sciences & BiomedicineBEHAVIORCrowd dynamicsRelation (database)Bioinformatics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]BioengineeringPedestrianModels PsychologicalMachine learningAdvanced Traffic Management SystemPedestrian traffic0103 physical sciencesHumansComputer Simulation[NLIN.NLIN-AO]Nonlinear Sciences [physics]/Adaptation and Self-Organizing Systems [nlin.AO]Block (data storage)Science & Technologybusiness.industryMathematical ConceptsSIMULATIONSdata-based modelingCrowdingKey (cryptography)Artificial intelligenceMathematical & Computational Biologybusinesscomputer
researchProduct

Pattern formation in clouds via Turing instabilities

2020

Pattern formation in clouds is a well-known feature, which can be observed almost every day. However, the guiding processes for structure formation are mostly unknown, and also theoretical investigations of cloud patterns are quite rare. From many scientific disciplines the occurrence of patterns in non-equilibrium systems due to Turing instabilities is known, i.e. unstable modes grow and form spatial structures. In this study we investigate a generic cloud model for the possibility of Turing instabilities. For this purpose, the model is extended by diffusion terms. We can show that for some cloud models, i.e special cases of the generic model, no Turing instabilities are possible. However,…

Diffusion (acoustics)Structure formation010504 meteorology & atmospheric scienceslinear stability analysisQC1-999Pattern formationCloud computingDynamical Systems (math.DS)01 natural sciences86A10 (Primary) 37G02 (Secondary)numerical simulationspattern formationMeteorology. ClimatologyFOS: MathematicsStatistical physicsMathematics - Dynamical Systems0101 mathematicsSpecial caseTuringspatial patterns0105 earth and related environmental sciencescomputer.programming_languagePhysicsbusiness.industryPhysicscloud schemes010101 applied mathematicsNonlinear systemSpatial ecologyQC851-999businesscomputerMathematics of Climate and Weather Forecasting
researchProduct

Levy targeting and the principle of detailed balance

2011

We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) …

Diffusion equationDynamical systems theoryMovementNormal DistributionFOS: Physical sciencesDiffusionOscillometryMaster equationFOS: MathematicsApplied mathematicsCondensed Matter - Statistical MechanicsMathematical PhysicsMathematicsStochastic ProcessesModels StatisticalStatistical Mechanics (cond-mat.stat-mech)SemigroupStochastic processPhysicsProbability (math.PR)Mathematical analysisCauchy distributionDetailed balanceMathematical Physics (math-ph)Markov ChainsTransformation (function)ThermodynamicsAlgorithmsMathematics - Probability
researchProduct

Planar maps whose second iterate has a unique fixed point

2007

Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…

Discrete mathematics37G10; 37G15; 34K18Algebra and Number TheoryApplied Mathematics37G15Dynamical Systems (math.DS)Fixed point37G10Homothetic transformationPlanar graphSet (abstract data type)symbols.namesakeMathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicssymbolsEmbeddingDifferentiable functionMathematics - Dynamical Systems34K18AnalysisEigenvalues and eigenvectorsMathematicsJournal of Difference Equations and Applications
researchProduct

On the connectedness of the attainability set for lattice dynamical systems

2012

We prove the Kneser property (i.e. the connectedness and compactness of the attainability set at any time) for lattice dynamical systems in which we do not know whether the property of uniqueness of the Cauchy problem holds or not. Using this property, we can check that the global attractor of the multivalued semiflow generated by such system is connected.

Discrete mathematicsAlgebra and Number TheoryCompact spaceDynamical systems theorySocial connectednessApplied MathematicsLattice (order)AttractorInitial value problemUniquenessAnalysisMathematicsJournal of Difference Equations and Applications
researchProduct

A note on renewal systems

1992

Abstract A renewal system is a symbolic dynamical system generated by free concatenations of a finite set of words. In this paper we prove that, given two systems which are both renewal and Markov systems, it is decidable whether they are topologically conjugate. The proof makes use of the methods and the techniques of formal language theory.

Discrete mathematicsAlgebraGeneral Computer ScienceFormal languageMarkov systemsDynamical system (definition)Topological conjugacyFinite setComputer Science::Formal Languages and Automata TheoryDecidabilityMathematicsTheoretical Computer ScienceComputer Science(all)Theoretical Computer Science
researchProduct

Resonance between Cantor sets

2007

Let $C_a$ be the central Cantor set obtained by removing a central interval of length $1-2a$ from the unit interval, and continuing this process inductively on each of the remaining two intervals. We prove that if $\log b/\log a$ is irrational, then \[ \dim(C_a+C_b) = \min(\dim(C_a) + \dim(C_b),1), \] where $\dim$ is Hausdorff dimension. More generally, given two self-similar sets $K,K'$ in $\RR$ and a scaling parameter $s>0$, if the dimension of the arithmetic sum $K+sK'$ is strictly smaller than $\dim(K)+\dim(K') \le 1$ (``geometric resonance''), then there exists $r<1$ such that all contraction ratios of the similitudes defining $K$ and $K'$ are powers of $r$ (``algebraic resonance…

Discrete mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsDynamical Systems (math.DS)01 natural sciences010305 fluids & plasmasIrrational rotationCantor setIterated function systemMathematics - Classical Analysis and ODEs28A80 28A78Irrational numberHausdorff dimension0103 physical sciencesArithmetic progressionClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - Dynamical Systems0101 mathematicsAlgebraic numberScalingMathematics
researchProduct

Forbidden words in symbolic dynamics

2000

AbstractWe introduce an equivalence relation≃between functions from N to N. By describing a symbolic dynamical system in terms of forbidden words, we prove that the≃-equivalence class of the function that counts the minimal forbidden words of a system is a topological invariant of the system. We show that the new invariant is independent from previous ones, but it is not characteristic. In the case of sofic systems, we prove that the≃-equivalence of the corresponding functions is a decidable question. As a more special application, we show, by using the new invariant, that two systems associated to Sturmian words having “different slope” are not conjugate.

Discrete mathematicsApplied Mathematicsautomata and formal languages010102 general mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Symbolic dynamics[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciencesFunction (mathematics)16. Peace & justice01 natural sciencesDecidabilitysymbolic dynamics010201 computation theory & mathematicsEquivalence relationcombinatoric on words0101 mathematicsInvariant (mathematics)Dynamical system (definition)Equivalence (measure theory)Computer Science::Formal Languages and Automata TheoryWord (group theory)ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

On the existence of conditionally invariant probability measures in dynamical systems

2000

Let T : X→X be a measurable map defined on a Polish space X and let Y be a non-trivial subset of X. We give conditions ensuring the existence of conditionally invariant probability measures to non-absorption in Y. For dynamics which are non-singular with respect to some fixed probability measure we supply sufficient conditions for the existence of absolutely continuous conditionally invariant measures. These conditions are satisfied for a wide class of dynamical systems including systems that are Φ-mixing and Gibbs.

Discrete mathematicsClass (set theory)Dynamical systems theoryApplied MathematicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsAbsolute continuityRandom measurePolish spaceInvariant measureInvariant (mathematics)Mathematical PhysicsProbability measureMathematicsNonlinearity
researchProduct

Dimensions of random affine code tree fractals

2014

We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.

Discrete mathematicsCode (set theory)v-variable fractalsApplied MathematicsGeneral MathematicsProbability (math.PR)ta111Dynamical Systems (math.DS)self-similar setsTree (descriptive set theory)Box countingFractalIterated function systemMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsAffine transformationMathematics - Dynamical Systems28A80 60D05 37H99RandomnessMathematics - ProbabilityMathematics
researchProduct