Search results for "dynamical system"
showing 10 items of 523 documents
Modeling crowd dynamics through coarse-grained data analysis
2018
International audience; Understanding and predicting the collective behaviour of crowds is essential to improve the efficiency of pedestrian flows in urban areas and minimize the risks of accidents at mass events. We advocate for the development of crowd traffic management systems, whereby observations of crowds can be coupled to fast and reliable models to produce rapid predictions of the crowd movement and eventually help crowd managers choose between tailored optimization strategies. Here, we propose a Bi-directional Macroscopic (BM) model as the core of such a system. Its key input is the fundamental diagram for bi-directional flows, i.e. the relation between the pedestrian fluxes and d…
Pattern formation in clouds via Turing instabilities
2020
Pattern formation in clouds is a well-known feature, which can be observed almost every day. However, the guiding processes for structure formation are mostly unknown, and also theoretical investigations of cloud patterns are quite rare. From many scientific disciplines the occurrence of patterns in non-equilibrium systems due to Turing instabilities is known, i.e. unstable modes grow and form spatial structures. In this study we investigate a generic cloud model for the possibility of Turing instabilities. For this purpose, the model is extended by diffusion terms. We can show that for some cloud models, i.e special cases of the generic model, no Turing instabilities are possible. However,…
Levy targeting and the principle of detailed balance
2011
We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) …
Planar maps whose second iterate has a unique fixed point
2007
Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…
On the connectedness of the attainability set for lattice dynamical systems
2012
We prove the Kneser property (i.e. the connectedness and compactness of the attainability set at any time) for lattice dynamical systems in which we do not know whether the property of uniqueness of the Cauchy problem holds or not. Using this property, we can check that the global attractor of the multivalued semiflow generated by such system is connected.
A note on renewal systems
1992
Abstract A renewal system is a symbolic dynamical system generated by free concatenations of a finite set of words. In this paper we prove that, given two systems which are both renewal and Markov systems, it is decidable whether they are topologically conjugate. The proof makes use of the methods and the techniques of formal language theory.
Resonance between Cantor sets
2007
Let $C_a$ be the central Cantor set obtained by removing a central interval of length $1-2a$ from the unit interval, and continuing this process inductively on each of the remaining two intervals. We prove that if $\log b/\log a$ is irrational, then \[ \dim(C_a+C_b) = \min(\dim(C_a) + \dim(C_b),1), \] where $\dim$ is Hausdorff dimension. More generally, given two self-similar sets $K,K'$ in $\RR$ and a scaling parameter $s>0$, if the dimension of the arithmetic sum $K+sK'$ is strictly smaller than $\dim(K)+\dim(K') \le 1$ (``geometric resonance''), then there exists $r<1$ such that all contraction ratios of the similitudes defining $K$ and $K'$ are powers of $r$ (``algebraic resonance…
Forbidden words in symbolic dynamics
2000
AbstractWe introduce an equivalence relation≃between functions from N to N. By describing a symbolic dynamical system in terms of forbidden words, we prove that the≃-equivalence class of the function that counts the minimal forbidden words of a system is a topological invariant of the system. We show that the new invariant is independent from previous ones, but it is not characteristic. In the case of sofic systems, we prove that the≃-equivalence of the corresponding functions is a decidable question. As a more special application, we show, by using the new invariant, that two systems associated to Sturmian words having “different slope” are not conjugate.
On the existence of conditionally invariant probability measures in dynamical systems
2000
Let T : X→X be a measurable map defined on a Polish space X and let Y be a non-trivial subset of X. We give conditions ensuring the existence of conditionally invariant probability measures to non-absorption in Y. For dynamics which are non-singular with respect to some fixed probability measure we supply sufficient conditions for the existence of absolutely continuous conditionally invariant measures. These conditions are satisfied for a wide class of dynamical systems including systems that are Φ-mixing and Gibbs.
Dimensions of random affine code tree fractals
2014
We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.