Search results for "eAMS"
showing 10 items of 445 documents
Assessment of push-out test response of hybrid steel trussed-concrete beams by FE model
2013
Aiming to investigate the truss-concrete stress transfer mechanism in Hybrid Steel Trussed-Concrete Beams (HSTCBs), a three-dimensional nonlinear FE model is developed. The constitutive laws of the steel composing the plates and the bars is modeled by means of a quadri-linear law, while the concrete behavior is defined by means of a Concrete Damaged Plasticity (CDP) model, suitable for modeling concrete and brittle materials. The CDP model uses the concept of isotropic damaged elasticity in combination with isotropic tensile and compressive plasticity and is able to properly account for the concrete confinement effect. Two main failure mechanisms are considered, namely the tensile cracking …
Innovative connections for steel-concrete-trussed beams: a patented solution
2023
The most recent design strategies welcome the adoption of innovative techniques for seismic energy input mitigation, aiming to achieve high dissipation capacity, prevent the structure from collapse and ensure the serviceability of the construction. Friction damper devices have been widely adopted in framed steel structures for decades, while their introduction in different structural types is still under investigation. This paper presents the outcomes of innovative research supported by the industry and conducted on beam-to-column connections of RC structures in which the beams are Hybrid Steel-Trussed Concrete Beams (HSTCBs) and the columns are classical RC pillars. An innovative solution,…
Evaluation of the shear connection strength of precast hybrid steel-trussed-concrete composite beams
2015
In last decades, significant efforts have been carried out by the scientific community to evaluate the main technical issues of Hybrid Steel-Trussed-Concrete beams, investigating both the first opera-tive phase, i.e. before the concrete casting, when only the bare truss works, and, the second phase, i.e. after the concrete curing, when the beam works as a composite element. In the present study, the attention is focused on the evaluation of the shear strength of the connection between the bottom plate of the steel truss and the concrete core proposing a mechanical model able to predict its ulti-mate resistance. The proposed mechanical formulation is mainly based on the extension of existing…
Finite element modeling of the shear behavior of hybrid steel trussed concrete beams
2015
The development and calibration of a three-dimensional (3D) nonlinear Finite Element (FE) model is presented with the aim of investigating the shear behavior of steel-concrete composite beams realized with a steel truss embedded into a concrete core and named Hybrid Steel Trussed-Concrete Beams (HSTCBs). The model is calibrated on the results of a reference experimental campaign of three-point bending tests on HSTCBs realized at the Laboratory of Structures of the University of Palermo. The actual behavior at the steel-concrete interface has been introduced in the model through the implementa-tion of a cohesive constitutive relationship. Furthermore, the damaged plasticity of concrete has b…
Shear-flexure interaction of RC elements strengthened with FRP sheets
2005
An approximate physical model for evaluation of the M-V interaction resistance domains for concrete elements strengthened with FRP sheets is presented. The reliability of the model in predicting flexureshear capacity is verified by a comparison with the results of several experimental tests.
Experimental investigation on high-strength fibre-reinforced concrete beams subjected to bending and shear
2008
The results of an experimental campaign carried out on a number of high-strength concrete beams loaded in 4-point bending are presented in this paper, where the roles of the both steel hooked fibres and the transverse reinforcement are investigated, for different values of the shear span. All tests were displacement-controlled. The results – mostly in terms of load-deflection curves – confirm what is well known in the literature, that an adequate amount of steel fibres can turn a brittle shear-type failure into a ductile flexural-type failure, to the advantage of the ultimate bearing capacity in flexure and shear, that can be fully exploited without increasing the transverse reinforcement. …
Comparative analysis of shear resisting models for hybrid steel trussed concrete beams
2018
The hybrid steel trussed concrete beams represent a structural solution widely adopted in the industrial constructions thanks to the numerous advantages due to their use, such as economic convenience, high performances and constructional speed de-riving from the partial prefabrication process and from the self load-carrying capacity of the beam in the first operative phase, prior to the in-site casting of concrete. The hybrid steel trussed concrete beams examined in the present study are constituted by two prin-cipal components, i.e. a steel joist with inclined rebars, realized in industry, which is welded to a smooth steel plate and then embed-ded within the concrete material cast in situ.…
Investigation on the behaviour of fully thermoplastic composite sandwich beams under concentrated loads
2009
The recent development of new low cost manufacturing processes adopting thermoplastic matrices in the production of structural long fibre reinforced laminates is fostering an increasing interest towards this class of materials. The automotive sector in particular is attracted by the high energy absorbing, damage tolerance performances and manufacturing and recycling potentials of structural thermoplastic composites. In this study a number of fully thermoplastic sandwich beams have been manufactured in order to investigate flexural and shear rigidity performances as well as the indentation behavior under static concentrated loads.
Phenol compounds as new materials for electron spin resonance dosimetry in radiotherapy
2016
Introduction: Among the various dosimetric techniques used for characterizing the radiation beams used in radiation therapy, the electron spin resonance (ESR) arouses increasing interest for applications in various therapy procedures. Free radicals are known to be produced when a compound is irradiated with ionizing radiations. The concentration of radiationinduced free radicals is proportional to the absorbed dose and this allows for dosimetric measurements through ESR technique which enables to quantitatively determine the radical concentration. In this work we report the ESR investigation of phenol pellets and thin films exposed to various types of radiation beams (clinical photon and el…
Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines
2016
Abstract This work reports experimental data collected for the first time on a full-scale RED pilot plant operated with natural streams in a real environment. The plant – located in the South of Italy – represents the final accomplishment of the REAPower project ( www.reapower.eu ). A RED unit equipped with almost 50 m2 of IEMs (125 cell pairs, 44x44 cm2) was tested, using both artificial and natural feed solutions, these latter corresponding to brackish water (≈0.03 M NaClequivalent) and saturated brine (4–5 M NaClequivalent). A power output up to around 40 W (i.e. 1.6 W/m2 of cell pair) was reached using natural solutions, while an increase of 60% was observed when testing the system with…