Search results for "eigenvalues"
showing 10 items of 315 documents
Electron-density critical points analysis and catastrophe theory to forecast structure instability in periodic solids
2018
The critical points analysis of electron density,i.e. ρ(x), fromab initiocalculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points,i.e. such that ∇ρ(xc) = 0 and λ1, λ2, λ3≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) atxc], towards degenerate critical points,i.e. ∇ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood ofxcand allo…
Comparison results for Hessian equations via symmetrization
2007
where the λ’s are the eigenvalues of the Hessian matrix D2u of u and Sk is the kth elementary symmetric function. For example, for k = 1, S1(Du) = 1u, while, for k = n, Sn(D 2u) = detD2u. Equations involving these operators, and some more general equations of the form F(λ1, . . . , λn) = f in , (1.2) have been widely studied by many authors, who restrict their considerations to convenient cones of solutions with respect to which the operator in (1.2) is elliptic. Following [25] we define the cone 0k of ellipticity for (1.1) to be the connected component containing the positive cone 0 = {λ ∈ R : λi > 0 ∀i = 1, . . . , n} of the set where Sk is positive. Thus 0k is an open, convex, symmetric…
The damped harmonic oscillator in deformation quantization
2005
We propose a new approach to the quantization of the damped harmonic oscillator in the framework of deformation quantization. The quantization is performed in the Schr\"{o}dinger picture by a star-product induced by a modified "Poisson bracket". We determine the eigenstates in the damped regime and compute the transition probability between states of the undamped harmonic oscillator after the system was submitted to dissipation.
Modular invariant dynamics and fermion mass hierarchies around τ = i
2021
We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point $\tau=i$, where modular invariant theories possess a residual $Z_4$ invariance. In this region the breaking of $Z_4$ can be fully described by the spurion $\epsilon \approx \tau - i$, that flips its sign under $Z_4$. Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the $Z_4$ symmetry at $\tau=i$, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of $|\epsilon|$. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepto…
Continuum Goldstone spectrum of two-color QCD at finite density with staggered quarks
2019
We carry out lattice simulations of two-color QCD and spectroscopy at finite density with two flavors of rooted-staggered quarks and a diquark source term. As in a previous four-flavor study, for small values of the inverse gauge coupling we observe a Goldstone spectrum which reflects the symmetry-breaking pattern of a Gaussian symplectic chiral random-matrix ensemble (GSE) with Dyson index $\beta_D=4$, which corresponds to any-color QCD with adjoint quarks in the continuum instead of QC$_2$D wih fundamental quarks. We show that this unphysical behavior occurs only inside of the bulk phase of $SU(2)$ gauge theory, where the density of $Z_2$ monopoles is high. Using an improved gauge action …
Spin Chains with Non-Diagonal Boundaries and Trigonometric SOS Model with Reflecting End
2011
In this paper we consider two a priori very different problems: construction of the eigenstates of the spin chains with non parallel boundary magnetic fields and computation of the partition function for the trigonometric solid-on-solid (SOS) model with one reflecting end and domain wall boundary conditions. We show that these two problems are related through a gauge transformation (so-called vertex-face transformation) and can be solved using the same dynamical reflection algebras.
SOV approach for integrable quantum models associated to general representations on spin-1/2 chains of the 8-vertex reflection algebra
2013
The analysis of the transfer matrices associated to the most general representations of the 8-vertex reflection algebra on spin-1/2 chains is here implemented by introducing a quantum separation of variables (SOV) method which generalizes to these integrable quantum models the method first introduced by Sklyanin. More in detail, for the representations reproducing in their homogeneous limits the open XYZ spin-1/2 quantum chains with the most general integrable boundary conditions, we explicitly construct representations of the 8-vertex reflection algebras for which the transfer matrix spectral problem is separated. Then, in these SOV representations we get the complete characterization of t…
Low-temperature spectrum of correlation lengths of the XXZ chain in the antiferromagnetic massive regime
2015
We consider the spectrum of correlation lengths of the spin-$\frac{1}{2}$ XXZ chain in the antiferromagnetic massive regime. These are given as ratios of eigenvalues of the quantum transfer matrix of the model. The eigenvalues are determined by integrals over certain auxiliary functions and by their zeros. The auxiliary functions satisfy nonlinear integral equations. We analyse these nonlinear integral equations in the low-temperature limit. In this limit we can determine the auxiliary functions and the expressions for the eigenvalues as functions of a finite number of parameters which satisfy finite sets of algebraic equations, the so-called higher-level Bethe Ansatz equations. The behavio…
Space and Time Averaged Quantum Stress Tensor Fluctuations
2021
We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-orde…
On the thermal instability in a horizontal rectangular porous channel heated from below by a constant flux
2014
Published version of an article in the journal: Journal of Physics: Conference Series. Also available from the publisher at: http://dx.doi.org/10.1088/1742-6596/501/1/012003 Open Access The onset of thermoconvective instability in a rectangular horizontal channel filled with a fluid-saturated porous medium is studied. The channel is heated from below with a constant flux. The top wall is maintained at a uniform constant temperature, while the lateral boundaries are permeable and perfectly conducting. The stability of the basic motionless state is analysed with respect to small-amplitude disturbances. The eigenvalue problem for the neutral stability condition is solved analytically for the n…