Search results for "electrical conductivity."

showing 10 items of 42 documents

Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers

2016

Abstract High power factor n-type organic thermoelectric nanocomposites are assembled by alternately depositing double walled-nanotubes (DWNT), stabilized by polyethyleneimine (PEI), and graphene stabilized by polyvinylpyrrolidone (PVP), from water using the layer-by-layer (LbL) assembly technique. This unique combination of carbon nanomaterials exhibits an electrical conductivity of 300 S cm−1 and a relatively stable power factor of 190 μW m−1 K−2 at room temperature.

Materials scienceThin filmsNanotechnology02 engineering and technologyPower factor010402 general chemistry01 natural scienceslaw.inventionlawElectrical resistivity and conductivityThermoelectric effectmedicineElectrical conductivityGeneral Materials ScienceElectrical and Electronic EngineeringThin filmCarbon nanomaterialsLayer-by-layer assemblyNanocompositePolyvinylpyrrolidoneRenewable Energy Sustainability and the EnvironmentGrapheneThermoelectric021001 nanoscience & nanotechnology0104 chemical sciencesPower factor0210 nano-technologymedicine.drugNano Energy
researchProduct

Electrical conductivity and strong luminescence in copper Iodide double chains with isonicotinato derivatives

2015

Direct reactions between CuI and isonicotinic acid (HIN) or the corresponding esters, ethyl isonicotinate (EtIN) or methyl isonicotinate (MeIN), give rise to the formation of the coordination polymers [CuI(L)] with L=EtIN (1), MeIN (2) and HIN (3). Polymers 1-3 show similar structures based on a CuI double chain in which ethyl-, methyl isonicotinate or isonicotinic acid are coordinated as terminal ligands. Albeit, their supramolecular architecture differs considerably, affecting the distances and angles of the central CuI double chains and thereby their physical properties. Hence, the photoluminescence shows remarkable differences; 1 and 2 show a strong yellow emission, whereas 3 displays a…

Models MolecularThermogravimetric analysisPhotoluminescenceLuminescencePolymersInorganic chemistrySupramolecular chemistrychemistry.chemical_elementConductivityIsonicotinic acidLigandsNiacinCatalysisCopper iodidechemistry.chemical_compoundCoordination ComplexesElectrical conductivityCarboxylateMolecular StructureStructure elucidationOrganic ChemistryElectric ConductivityGeneral ChemistryIodidesCopperCoordination polymersCrystallographychemistryLuminescenceCopper
researchProduct

Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material

2021

PbS quantum dots and nanoplatelets (NPLs) are of enormous interest in the development of optoelectronic devices. However, some important aspects of their nature remain unclear. Recent studies have revealed that colloidal PbS NPLs may depart from the rock-salt crystal structure of bulk and form an orthorhombic (Pnma) modification instead. To gain insight into the implications of such a change over the optoelectronic properties, we have synthesized orthorhombic PbS NPLs and determined the lattice parameters by means of selected area electron diffraction measurements. We have then calculated the associated band structure using density functional theory with Perdew–Burke–Ernzerhof functional fo…

Morphology (linguistics)Materials scienceexcitonselectrical conductivitybusiness.industryGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologybinding energy01 natural sciencesquantum confinement0104 chemical sciencesQuantum dotMaterials ChemistryOptoelectronicsDirect and indirect band gapsOrthorhombic crystal system0210 nano-technologyElectronic band structurebusinessenergy
researchProduct

A new route for the preparation of flexible skin–core poly(ethylene-co-acrylic acid)/polyaniline functional hybrids

2011

Abstract Surface modification of polymeric films is a way to obtain final products with high performance for many specific and ad hoc tailored applications, e.g. in functional packaging, tissue engineering or (bio)sensing. The present work reports, for the first time, on the design and development of surface modified ethylene–acrylic acid copolymer (EAA) films with polyaniline (PANI), with the aim of inducing electrical conductivity and potentially enable the electronic control of a range of physical and chemical properties of the film surface, via a new “grafting from” approach. In particular, we demonstrate that PANI was successfully polymerized and covalently grafted onto flexible EAA su…

MorphologyMaterials Chemistry2506 Metals and AlloysMaterials sciencePolymers and PlasticsPolyanilineGeneral Chemical EngineeringHybrid polymersBiochemistrychemistry.chemical_compoundX-ray photoelectron spectroscopyPolyanilinePolymer chemistryChemical surface modificationElectrical conductivityPolyaniline Chemical surface modification Hybrid polymers Morphology Electrical conductivityMaterials ChemistryCopolymerEnvironmental ChemistryChemical Engineering (all)Fourier transform infrared spectroscopyAcrylic acidChemistry (all)General ChemistryChemical engineeringchemistryPolymerizationSurface modificationSettore CHIM/07 - Fondamenti Chimici Delle TecnologieChemical surface modification; Electrical conductivity; Hybrid polymers; Morphology; Polyaniline; Materials Chemistry2506 Metals and Alloys; Polymers and Plastics; Chemistry (all); Chemical Engineering (all); Environmental Chemistry; BiochemistryHybrid materialReactive and Functional Polymers
researchProduct

Structural, electronic, and electrical properties of an Undoped n-Type CdO thin film with high electron concentration

2014

Transparent conducting metal oxides (TCOs) combine the properties of optical transparency in the visible region with a high electrical conductivity. They are a critical component as the window electrode in liquid crystal and electroluminescent display devices, as well as in many designs of solar cells now under development. Sn-doped In2O3 is currently the most important TCO, but it suffers from some drawbacks. These include the high cost of indium, weak optical absorption in the blue-green region, as well as chemical instability that leads to corrosion phenomena in organic light-emitting devices. Indium tin oxide (ITO) films are also brittle and of relatively low durability. A number of oth…

Organic light-emitting devices Optical propertiesMaterials scienceDisplay deviceElectroluminescent display deviceHigh electron concentrationCdO; semiconductor; TCOchemistry.chemical_elementChemical vapor depositionAtomic force microscopyElectric conductivityElectrical resistivity and conductivityChemical vapor depositionLight absorptionThin filmPhysical and Theoretical ChemistryThin filmCdOHigh electrical conductivitybusiness.industryDegenerate semiconductorFree electron concentrationsemiconductorSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIndium tin oxideElectroluminescent displayPhotoelectron spectroscopyGeneral EnergychemistryLiquid crystalTCOTinElectrodeOptoelectronicsX ray diffraction Conducting metal oxidebusinessTinLuminescence measurementIndium
researchProduct

Electrical transport in carbon black-epoxy resin composites at different temperatures

2013

Citation: J. Appl. Phys. 114, 033707 (2013); doi: 10.1063/1.4815870 (Received 3 May 2013; accepted 27 June 2013; published online 17 July 2013) Results of broadband electric/dielectric properties of different surface area—carbon black/epoxy resin composites above the percolation threshold are reported in a wide temperature range (25–500 K). At higher temperatures (above 400 K), the electrical conductivity of composites is governed by electrical transport in polymer matrix and current carriers tunneling from carbon black clusters to polymer matrix. The activation energy of such processes decreases when the carrier concentration increases, i.e., with the increase of carbon black concentration…

PermittivityMaterials scienceAnnealing (metallurgy)General Physics and Astronomy02 engineering and technologyDielectric7. Clean energy01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsElectrical resistivity and conductivity:ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика [ЭБ БГУ]0103 physical sciences[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]Rectangular potential barrierComposite material010306 general physicsSettore CHIM/02 - Chimica Fisica[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Percolation thresholdCarbon blackEpoxy[CHIM.MATE]Chemical Sciences/Material chemistryCarbon Polymers Annealing Conducting polymersElectrical conductivity021001 nanoscience & nanotechnology[SPI.ELEC]Engineering Sciences [physics]/ElectromagnetismSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali[CHIM.POLY]Chemical Sciences/Polymersvisual_artvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]0210 nano-technology
researchProduct

On the temperature dependence of the electrical conductivity in hot quenched lattice QCD

2011

Extending our recent work, we report on a calculation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD in the temperature range 1.16Tc<T<2.98Tc. After performing a systematic analysis of the in fluence of cut-off effects on light quark meson correlators using clover improved Wilson fermions, we discuss resulting constraints on the electrical conductivity in a quark gluon plasma.

Quantum chromodynamicsQuarkPhysicsfunctionNuclear and High Energy PhysicsValence (chemistry)MesonCondensed matter physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFermionLattice QCDQuark gluon plasmaHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeElectrical resistivity and conductivityLight quark spectralQuark–gluon plasmaElectrical conductivityHigh Energy Physics::Experiment
researchProduct

Nanocarbon broadband analysis, temperature dependent dielectric properties and percolation thresholds

2013

The results of a broadband dielectric investigation of multi-walled CNT (MWCNT)/epoxy resin composites in wide temperature range from room temperature to 450 K are reported. Far below the percolation threshold (0.25 wt% MWCNT) the dielectric properties of the composite are mostly determined by alpha relaxation in pure polymer matrix. Close to the percolation threshold the composite shows the negative temperature coefficient (NTC) effect in the temperature region, where the pure polymer matrix becomes conductive. The activation energy increases with the MWCNT concentration far below the percolation threshold and decreases close to it (1.5 wt% MWCNT). The dielectric analysis of the MWCNT/epox…

Settore ING-IND/22 - Scienza E Tecnologia Dei Materialicarbon nanotubes dielectric relaxation electrical conductivity filled polymers nanocomposites percolation permittivity resinsSettore CHIM/02 - Chimica Fisica
researchProduct

TCO/Ag/TCO transparent electrodes for solar cells application

2014

Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the natur…

Soda-lime glassMaterials scienceTransparent electrode Electrodeschemistry.chemical_elementPhotovoltaic applicationrf-Magnetron sputteringMetalTransparent conductive oxideElectrical resistivity and conductivityAluminiumElectrical conductivityGeneral Materials ScienceElectrical performanceElectrical conductorbusiness.industryGeneral ChemistrySputter depositionElectrical and optical propertieITO glaIndium tin oxidechemistryvisual_artElectrodevisual_art.visual_art_mediumOptoelectronicsbusinessSilver Aluminum zinc oxideAluminum coatingMagnetron sputtering
researchProduct

Control and Simplicity in the Nanoprocessing of Semiconducting Copper-Iodine Double Chain Coordination Polymers

2018

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00364

Supramolecular chemistrySubstituentchemistry.chemical_element02 engineering and technologyConductivity010402 general chemistryIsonicotinic acid01 natural sciencesInorganic Chemistrychemistry.chemical_compoundMultifunctionalMolecular recognitionElectrical conductivityPhysical and Theoretical ChemistryNanomaterialschemistry.chemical_classificationQuímicaPolymer021001 nanoscience & nanotechnologyCopper0104 chemical sciencesCoordination polymersCrystallographychemistry0210 nano-technologyDerivative (chemistry)Inorganic Chemistry
researchProduct