Search results for "electrocatalysts"

showing 6 items of 6 documents

Tuning the Magnetic Properties of Carbon by Nitrogen Doping of Its Graphene Domains

2015

Here we present the formation of predominantly sp-coordinate carbon with magnetic- and heteroatom-induced structural defects in a graphene lattice by a stoichiometric dehalogenation of perchlorinated (hetero)aromatic precursors [hexachlorobenzene, CCl (HCB), and pentachloropyridine, NCCl (PCP)] with transition metals such as copper in a combustion synthesis. This route allows the build-up of a carbon lattice by a chemistry free of hydrogen and oxygen compared to other pyrolytic approaches and yields either nitrogen-doped or -undoped graphene domains depending on the precursor. The resulting carbon was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM…

ChemistryGrapheneScanning electron microscopeInorganic chemistryGeneral Chemistry7. Clean energyBiochemistryCatalysis3. Good healthlaw.inventionMagnetizationsymbols.namesakeColloid and Surface ChemistryX-ray photoelectron spectroscopylawTransmission electron microscopysymbolsCarbide-derived carbonPhysical chemistryPyrolytic carbonRaman spectroscopyCHEMICAL-VAPOR-DEPOSITION; N-DOPED GRAPHENE; RECENT PROGRESS; FILMS; ELECTROCATALYSTS; NANORIBBONS; RADICALS; STATE
researchProduct

Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers

2019

Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO2 concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals can be potentially achieved through the electrochemical water splitting, which is an environmentally friendly process as well as the electrons and water are the only reagents. However, these devices stil…

Control and OptimizationMaterials scienceNanostructureHydrogen020209 energyEnergy Engineering and Power Technologychemistry.chemical_elementNanotechnology02 engineering and technologyElectrocatalystElectrosynthesiselectrocatalystslcsh:Technologynickeliridium oxideHydrogen economySettore ING-IND/17 - Impianti Industriali Meccanicinanostructures0202 electrical engineering electronic engineering information engineeringalkaline electrolyzersElectrical and Electronic EngineeringEngineering (miscellaneous)Energy carrierRenewable Energy Sustainability and the Environmentbusiness.industrylcsh:TOxygen evolutionElectrocatalyst021001 nanoscience & nanotechnologypalladiumcobaltAnodeNanowireSettore ING-IND/23 - Chimica Fisica Applicatachemistrynanowiresni-alloyWater splitting0210 nano-technologybusinessAlkaline electrolyzerfoamEnergy (miscellaneous)Energies
researchProduct

Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts

2021

To date, a plethora of electrocatalysts for the Oxygen Evolution Reaction (OER) have been proposed. For evaluating their electrocatalytic behavior the determination of the onset potential in each studied electrolyte is a key parameter. Nevertheless, this evaluation becomes particularly problematic for first- transition metal catalysts as well as by the use of electroactive collectors ( e.g. Ni foams) whose redox peaks overlap the onset potential. A usual solution to detect the onset potential requires the availabil- ity of in-situ mass spectrometric determination of the generated oxygen. In this work, we present fast and easier available cyclic voltammetry and coulovoltammetric responses to…

Prussian blueTafel equationMaterials scienceUNESCO::QUÍMICAGeneral Chemical EngineeringInorganic chemistryOxygen evolution02 engineering and technologyElectrolyte010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesRedox:QUÍMICA [UNESCO]0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryElectrochemistryoxidation electrocatalystsHydroxideCyclic voltammetry0210 nano-technology
researchProduct

Exploring Solvent-free Citrate-Nitrate Auto-Combustion for the Synthesis of SOFC Electrocatalysts

2009

Settore CHIM/03 - Chimica Generale E InorganicaSOFC Electrocatalysts Citrate-Nitrate Auto-CombustionSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie
researchProduct

Solvent-free synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8

2019

Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8 with the formula Fe(2-methylimidazolate) , here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology can be extended to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67, and the unprecedented iron(II) ZIFs Fe(2-ethylimidazolate) and Fe(2-methylbenzimidazolate) . The different performance of MUV-3 toward NO sorption, in comparison to ZIF-8, results …

Zeolitic imidazolate frameworksStorage02 engineering and technologyOverpotential010402 general chemistryMetal-Organic frameworks01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryImidazolateMaterialsThermal-StabilityTafel equationNanocompositeChemistryOxygen evolutionElectrocatalystsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemisorptionPhysical chemistryMetal-organic frameworkAdsorptionCristalls0210 nano-technologyOxygen evolutionZeolitic imidazolate framework
researchProduct

Highly Active and Stable NiCuMo Electrocatalyst Supported on 304 Stainless Steel Porous Transport Layer for Hydrogen Evolution in Alkaline Water Elec…

2023

Several functionalized porous transport layers with Pt-free electrocatalysts for hydrogen evolution reaction in alkaline conditions, based on Ni, Cu, and Mo, are prepared through electrodeposition onto a 304 stainless steel mesh. Morphological characterization confirms the fabrication of electrodes with high electrochemical surface active area due to the formation of hierarchical nanostructures. Mo presence into the electrocatalysts increases the activity toward the hydrogen evolution reaction. The optimization of electrodeposition process leads to the preparation of highly active NiCuMo electrocatalyst that exhibits near zero onset overpotential and overpotentials of 15 and 113 mV at 10 an…

hydrogen evolutionSettore ING-IND/23 - Chimica Fisica ApplicataPt-free electrocatalystsRenewable Energy Sustainability and the Environmentelectrocatalysisalkaline electrolyzersporous transport layersGeneral Environmental Science
researchProduct